結果
| 問題 |
No.990 N×Mマス計算(Kの倍数)
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-05-06 16:23:30 |
| 言語 | Lua (LuaJit 2.1.1734355927) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,970 bytes |
| コンパイル時間 | 123 ms |
| コンパイル使用メモリ | 7,072 KB |
| 実行使用メモリ | 15,488 KB |
| 最終ジャッジ日時 | 2024-06-28 17:58:53 |
| 合計ジャッジ時間 | 3,950 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 10 TLE * 1 -- * 8 |
ソースコード
local mce, mfl, msq, mmi, mma, mab = math.ceil, math.floor, math.sqrt, math.min, math.max, math.abs
local function getgcd(x, y)
while 0 < x do
x, y = y % x, x
end
return y
end
local function getprimes(x)
local primes = {}
local allnums = {}
for i = 1, x do allnums[i] = true end
for i = 2, x do
if allnums[i] then
table.insert(primes, i)
local lim = mfl(x / i)
for j = 2, lim do
allnums[j * i] = false
end
end
end
return primes
end
local function getdivisorparts(x, primes)
local prime_num = #primes
local tmp = {}
local lim = mce(msq(x))
local primepos = 1
local dv = primes[primepos]
while primepos <= prime_num and dv <= lim do
if x % dv == 0 then
local t = {}
t.p = dv
t.cnt = 1
x = x / dv
while x % dv == 0 do
x = x / dv
t.cnt = t.cnt + 1
end
table.insert(tmp, t)
lim = mce(msq(x))
end
if primepos == prime_num then break end
primepos = primepos + 1
dv = primes[primepos]
end
if x ~= 1 then
local t = {}
t.p, t.cnt = x, 1
table.insert(tmp, t)
end
return tmp
end
local function getdivisorCore(divisorparts)
local t = {}
local pat = 1
local len = #divisorparts
local allpat = 1
for i = 1, len do
allpat = allpat * (1 + divisorparts[i].cnt)
end
for t_i_pat = 0, allpat - 1 do
local div = allpat
local i_pat = t_i_pat
local ret = 1
for i = 1, len do
div = mfl(div / (divisorparts[i].cnt + 1))
local mul = mfl(i_pat / div)
i_pat = i_pat % div
for j = 1, mul do
ret = ret * divisorparts[i].p
end
end
table.insert(t, ret)
end
table.sort(t)
return t
end
local function getdivisor(x, primes)
local dvp = getdivisorparts(x, primes)
return getdivisorCore(dvp)
end
local n, m, k = io.read("*n", "*n", "*n", "*l")
local s = io.read()
local b = {}
for ss in s:gmatch("%d+") do
table.insert(b, tonumber(ss))
end
local a = {}
for i = 1, n do
a[i] = io.read("*n")
end
if s:sub(1, 1) == "+" then
local t = {}
for i = 1, m do
local rem = b[i] % k
if not t[rem] then t[rem] = 1
else t[rem] = t[rem] + 1 end
end
local ans = 0
for i = 1, n do
local rem = a[i] % k
rem = (k - rem) % k
if t[rem] then ans = ans + t[rem] end
end
print(ans)
os.exit()
end
local primes = getprimes(33333)
local divs = getdivisor(k, primes)
local bp = {}
for i = #divs, 1, -1 do
local dv = divs[i]
local cnt = 0
for im = 1, m do
if b[im] % dv == 0 then
cnt = cnt + 1
end
end
local lim = mfl(k / dv)
for j = 2, lim do
if bp[dv * j] then
cnt = cnt - bp[dv * j]
end
end
bp[dv] = cnt
end
local ans = 0
for ia = 1, n do
local gcd = getgcd(a[ia], k)
local invgcd = mfl(k / gcd)
local dvs = getdivisor(gcd, primes)
for i = 1, #dvs do
local iv = dvs[i]
if bp[invgcd * iv] then
ans = ans + bp[invgcd * iv]
end
end
end
print(ans)