結果

問題 No.990 N×Mマス計算(Kの倍数)
ユーザー 👑 obakyanobakyan
提出日時 2020-05-06 16:23:30
言語 Lua
(LuaJit 2.1.1696795921)
結果
TLE  
実行時間 -
コード長 2,970 bytes
コンパイル時間 123 ms
コンパイル使用メモリ 7,072 KB
実行使用メモリ 15,488 KB
最終ジャッジ日時 2024-06-28 17:58:53
合計ジャッジ時間 3,950 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
10,624 KB
testcase_01 AC 3 ms
5,376 KB
testcase_02 AC 3 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 16 ms
5,376 KB
testcase_05 AC 1 ms
5,376 KB
testcase_06 AC 3 ms
5,376 KB
testcase_07 AC 3 ms
5,376 KB
testcase_08 AC 2 ms
5,376 KB
testcase_09 AC 2 ms
5,376 KB
testcase_10 AC 38 ms
7,548 KB
testcase_11 AC 57 ms
8,180 KB
testcase_12 TLE -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

local mce, mfl, msq, mmi, mma, mab = math.ceil, math.floor, math.sqrt, math.min, math.max, math.abs

local function getgcd(x, y)
  while 0 < x do
    x, y = y % x, x
  end
  return y
end

local function getprimes(x)
  local primes = {}
  local allnums = {}
  for i = 1, x do allnums[i] = true end
  for i = 2, x do
    if allnums[i] then
      table.insert(primes, i)
      local lim = mfl(x / i)
      for j = 2, lim do
        allnums[j * i] = false
      end
    end
  end
  return primes
end

local function getdivisorparts(x, primes)
  local prime_num = #primes
  local tmp = {}
  local lim = mce(msq(x))
  local primepos = 1
  local dv = primes[primepos]
  while primepos <= prime_num and dv <= lim do
    if x % dv == 0 then
      local t = {}
      t.p = dv
      t.cnt = 1
      x = x / dv
      while x % dv == 0 do
        x = x / dv
        t.cnt = t.cnt + 1
      end
      table.insert(tmp, t)
      lim = mce(msq(x))
    end
    if primepos == prime_num then break end
    primepos = primepos + 1
    dv = primes[primepos]
  end
  if x ~= 1 then
    local t = {}
    t.p, t.cnt = x, 1
    table.insert(tmp, t)
  end
  return tmp
end

local function getdivisorCore(divisorparts)
  local t = {}
  local pat = 1
  local len = #divisorparts
  local allpat = 1
  for i = 1, len do
    allpat = allpat * (1 + divisorparts[i].cnt)
  end
  for t_i_pat = 0, allpat - 1 do
    local div = allpat
    local i_pat = t_i_pat
    local ret = 1
    for i = 1, len do
      div = mfl(div / (divisorparts[i].cnt + 1))
      local mul = mfl(i_pat / div)
      i_pat = i_pat % div
      for j = 1, mul do
        ret = ret * divisorparts[i].p
      end
    end
    table.insert(t, ret)
  end
  table.sort(t)
  return t
end

local function getdivisor(x, primes)
  local dvp = getdivisorparts(x, primes)
  return getdivisorCore(dvp)
end

local n, m, k = io.read("*n", "*n", "*n", "*l")
local s = io.read()
local b = {}
for ss in s:gmatch("%d+") do
  table.insert(b, tonumber(ss))
end
local a = {}
for i = 1, n do
  a[i] = io.read("*n")
end
if s:sub(1, 1) == "+" then
  local t = {}
  for i = 1, m do
    local rem = b[i] % k
    if not t[rem] then t[rem] = 1
    else t[rem] = t[rem] + 1 end
  end
  local ans = 0
  for i = 1, n do
    local rem = a[i] % k
    rem = (k - rem) % k
    if t[rem] then ans = ans + t[rem] end
  end
  print(ans)
  os.exit()
end
local primes = getprimes(33333)
local divs = getdivisor(k, primes)
local bp = {}
for i = #divs, 1, -1 do
  local dv = divs[i]
  local cnt = 0
  for im = 1, m do
    if b[im] % dv == 0 then
      cnt = cnt + 1
    end
  end
  local lim = mfl(k / dv)
  for j = 2, lim do
    if bp[dv * j] then
      cnt = cnt - bp[dv * j]
    end
  end
  bp[dv] = cnt
end
local ans = 0
for ia = 1, n do
  local gcd = getgcd(a[ia], k)
  local invgcd = mfl(k / gcd)
  local dvs = getdivisor(gcd, primes)
  for i = 1, #dvs do
    local iv = dvs[i]
    if bp[invgcd * iv] then
      ans = ans + bp[invgcd * iv]
    end
  end
end
print(ans)
0