結果
問題 | No.990 N×Mマス計算(Kの倍数) |
ユーザー | 👑 obakyan |
提出日時 | 2020-05-06 16:23:30 |
言語 | Lua (LuaJit 2.1.1696795921) |
結果 |
TLE
|
実行時間 | - |
コード長 | 2,970 bytes |
コンパイル時間 | 123 ms |
コンパイル使用メモリ | 7,072 KB |
実行使用メモリ | 15,488 KB |
最終ジャッジ日時 | 2024-06-28 17:58:53 |
合計ジャッジ時間 | 3,950 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
10,624 KB |
testcase_01 | AC | 3 ms
5,376 KB |
testcase_02 | AC | 3 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 16 ms
5,376 KB |
testcase_05 | AC | 1 ms
5,376 KB |
testcase_06 | AC | 3 ms
5,376 KB |
testcase_07 | AC | 3 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 38 ms
7,548 KB |
testcase_11 | AC | 57 ms
8,180 KB |
testcase_12 | TLE | - |
testcase_13 | -- | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
ソースコード
local mce, mfl, msq, mmi, mma, mab = math.ceil, math.floor, math.sqrt, math.min, math.max, math.abs local function getgcd(x, y) while 0 < x do x, y = y % x, x end return y end local function getprimes(x) local primes = {} local allnums = {} for i = 1, x do allnums[i] = true end for i = 2, x do if allnums[i] then table.insert(primes, i) local lim = mfl(x / i) for j = 2, lim do allnums[j * i] = false end end end return primes end local function getdivisorparts(x, primes) local prime_num = #primes local tmp = {} local lim = mce(msq(x)) local primepos = 1 local dv = primes[primepos] while primepos <= prime_num and dv <= lim do if x % dv == 0 then local t = {} t.p = dv t.cnt = 1 x = x / dv while x % dv == 0 do x = x / dv t.cnt = t.cnt + 1 end table.insert(tmp, t) lim = mce(msq(x)) end if primepos == prime_num then break end primepos = primepos + 1 dv = primes[primepos] end if x ~= 1 then local t = {} t.p, t.cnt = x, 1 table.insert(tmp, t) end return tmp end local function getdivisorCore(divisorparts) local t = {} local pat = 1 local len = #divisorparts local allpat = 1 for i = 1, len do allpat = allpat * (1 + divisorparts[i].cnt) end for t_i_pat = 0, allpat - 1 do local div = allpat local i_pat = t_i_pat local ret = 1 for i = 1, len do div = mfl(div / (divisorparts[i].cnt + 1)) local mul = mfl(i_pat / div) i_pat = i_pat % div for j = 1, mul do ret = ret * divisorparts[i].p end end table.insert(t, ret) end table.sort(t) return t end local function getdivisor(x, primes) local dvp = getdivisorparts(x, primes) return getdivisorCore(dvp) end local n, m, k = io.read("*n", "*n", "*n", "*l") local s = io.read() local b = {} for ss in s:gmatch("%d+") do table.insert(b, tonumber(ss)) end local a = {} for i = 1, n do a[i] = io.read("*n") end if s:sub(1, 1) == "+" then local t = {} for i = 1, m do local rem = b[i] % k if not t[rem] then t[rem] = 1 else t[rem] = t[rem] + 1 end end local ans = 0 for i = 1, n do local rem = a[i] % k rem = (k - rem) % k if t[rem] then ans = ans + t[rem] end end print(ans) os.exit() end local primes = getprimes(33333) local divs = getdivisor(k, primes) local bp = {} for i = #divs, 1, -1 do local dv = divs[i] local cnt = 0 for im = 1, m do if b[im] % dv == 0 then cnt = cnt + 1 end end local lim = mfl(k / dv) for j = 2, lim do if bp[dv * j] then cnt = cnt - bp[dv * j] end end bp[dv] = cnt end local ans = 0 for ia = 1, n do local gcd = getgcd(a[ia], k) local invgcd = mfl(k / gcd) local dvs = getdivisor(gcd, primes) for i = 1, #dvs do local iv = dvs[i] if bp[invgcd * iv] then ans = ans + bp[invgcd * iv] end end end print(ans)