結果

問題 No.1066 #いろいろな色 / Red and Blue and more various colors (Easy)
ユーザー HaarHaar
提出日時 2020-06-04 06:20:48
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
TLE  
実行時間 -
コード長 6,299 bytes
コンパイル時間 2,589 ms
コンパイル使用メモリ 210,328 KB
実行使用メモリ 10,496 KB
最終ジャッジ日時 2024-11-27 15:36:26
合計ジャッジ時間 36,280 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
10,496 KB
testcase_01 AC 2 ms
8,704 KB
testcase_02 AC 2 ms
10,276 KB
testcase_03 AC 2 ms
8,576 KB
testcase_04 AC 2 ms
10,496 KB
testcase_05 AC 1 ms
8,576 KB
testcase_06 AC 2 ms
10,496 KB
testcase_07 AC 2 ms
8,448 KB
testcase_08 TLE -
testcase_09 AC 3 ms
8,704 KB
testcase_10 TLE -
testcase_11 TLE -
testcase_12 AC 1,855 ms
5,248 KB
testcase_13 TLE -
testcase_14 TLE -
testcase_15 TLE -
testcase_16 AC 668 ms
5,248 KB
testcase_17 AC 713 ms
5,248 KB
testcase_18 TLE -
testcase_19 TLE -
testcase_20 AC 3 ms
5,248 KB
testcase_21 TLE -
testcase_22 AC 3 ms
5,248 KB
testcase_23 AC 2 ms
5,248 KB
testcase_24 AC 2 ms
5,248 KB
testcase_25 TLE -
testcase_26 TLE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

#ifdef DEBUG
#include <Mylib/Debug/debug.cpp>
#else
#define dump(...)
#endif


/**
 * @title modint
 * @docs mint.md
 */
template <uint32_t M> class ModInt{
public:
  constexpr static uint32_t MOD = M;
  uint64_t val;
  
  constexpr ModInt(): val(0){}
  constexpr ModInt(int64_t n){
    if(n >= M) val = n % M;
    else if(n < 0) val = n % M + M;
    else val = n;
  }
  
  inline constexpr auto operator+(const ModInt &a) const {return ModInt(val + a.val);}
  inline constexpr auto operator-(const ModInt &a) const {return ModInt(val - a.val);}
  inline constexpr auto operator*(const ModInt &a) const {return ModInt(val * a.val);}
  inline constexpr auto operator/(const ModInt &a) const {return ModInt(val * a.inv().val);}
  
  inline constexpr auto& operator=(const ModInt &a){val = a.val; return *this;}
  inline constexpr auto& operator+=(const ModInt &a){if((val += a.val) >= M) val -= M; return *this;}
  inline constexpr auto& operator-=(const ModInt &a){if(val < a.val) val += M; val -= a.val; return *this;}
  inline constexpr auto& operator*=(const ModInt &a){(val *= a.val) %= M; return *this;}
  inline constexpr auto& operator/=(const ModInt &a){(val *= a.inv().val) %= M; return *this;}
  
  inline constexpr bool operator==(const ModInt &a) const {return val == a.val;}
  inline constexpr bool operator!=(const ModInt &a) const {return val != a.val;}
  
  inline constexpr auto& operator++(){*this += 1; return *this;}
  inline constexpr auto& operator--(){*this -= 1; return *this;}
  
  inline constexpr auto operator++(int){auto t = *this; *this += 1; return t;}
  inline constexpr auto operator--(int){auto t = *this; *this -= 1; return t;}
  
  inline constexpr static ModInt power(int64_t n, int64_t p){
    if(p < 0) return power(n, -p).inv();
    
    int64_t ret = 1, e = n % M;
    for(; p; (e *= e) %= M, p >>= 1) if(p & 1) (ret *= e) %= M;
    return ret;
  }
  
  inline constexpr static ModInt inv(int64_t a){
    int64_t b = M, u = 1, v = 0;
    
    while(b){
      int64_t t = a / b;
      a -= t * b; std::swap(a,b);
      u -= t * v; std::swap(u,v);
    }
    
    u %= M;
    if(u < 0) u += M;
    
    return u;
  }
  
  inline constexpr static auto frac(int64_t a, int64_t b){return ModInt(a) / ModInt(b);}
  
  inline constexpr auto power(int64_t p) const {return power(val, p);}
  inline constexpr auto inv() const {return inv(val);}
  
  friend inline constexpr auto operator-(const ModInt &a){return ModInt(-a.val);}
  
  friend inline constexpr auto operator+(int64_t a, const ModInt &b){return ModInt(a) + b;}
  friend inline constexpr auto operator-(int64_t a, const ModInt &b){return ModInt(a) - b;}
  friend inline constexpr auto operator*(int64_t a, const ModInt &b){return ModInt(a) * b;}
  friend inline constexpr auto operator/(int64_t a, const ModInt &b){return ModInt(a) / b;}
  
  friend std::istream& operator>>(std::istream &s, ModInt<M> &a){s >> a.val; return s;}
  friend std::ostream& operator<<(std::ostream &s, const ModInt<M> &a){s << a.val; return s;}

  template <int N>
  inline static auto div(){
    static auto value = inv(N);
    return value;
  }

  explicit operator int32_t() const noexcept {return val;}
  explicit operator int64_t() const noexcept {return val;}
};


/**
 * @docs input_vector.md
 */
template <typename T>
std::vector<T> input_vector(int N){
  std::vector<T> ret(N);
  for(int i = 0; i < N; ++i) std::cin >> ret[i];
  return ret;
}

template <typename T>
std::vector<std::vector<T>> input_vector(int N, int M){
  std::vector<std::vector<T>> ret(N);
  for(int i = 0; i < N; ++i) ret[i] = input_vector<T>(M);
  return ret;
}


/**
 * @title NumberTheoreticTransform
 * @docs ntt_convolution.md
 */
template <typename T, int PRIM_ROOT, int MAX_SIZE>
class NumberTheoreticTransform{
  const int MAX_POWER;
  std::vector<T> BASE, INV_BASE;
  
public:
  NumberTheoreticTransform():
    MAX_POWER(__builtin_ctz(MAX_SIZE)),
    BASE(MAX_POWER + 1),
    INV_BASE(MAX_POWER + 1)
  {
    static_assert((MAX_SIZE & (MAX_SIZE - 1)) == 0, "MAX_SIZE must be power of 2.");

    T t = T::power(PRIM_ROOT, (T::MOD-1) >> (MAX_POWER + 2));
    T s = t.inv();
    
    for(int i = MAX_POWER - 1; i >= 0; --i){
      t *= t;
      s *= s;
      BASE[i] = -t;
      INV_BASE[i] = -s;
    }
  }

  void run_ntt(std::vector<T> &f, bool INVERSE = false){
    const int n = f.size();
    assert((n & (n-1)) == 0 and n <= MAX_SIZE); // データ数は2の冪乗個

    if(INVERSE){
      for(int b = 1; b < n; b <<= 1){
        T w = 1;
        for(int j = 0, k = 1; j < n; j += 2 * b, ++k){
          for(int i = 0; i < b; ++i){
            const auto s = f[i+j];
            const auto t = f[i+j+b];
            
            f[i+j] = s + t;
            f[i+j+b] = (s - t) * w;
          }
          w *= INV_BASE[__builtin_ctz(k)];
        }
      }
      
      const T t = T::inv(n);
      for(auto &x : f) x *= t;
    }else{
      for(int b = n >> 1; b; b >>= 1){
        T w = 1;
        for(int j = 0, k = 1; j < n; j += 2 * b, ++k){
          for(int i = 0; i < b; ++i){
            const auto s = f[i+j];
            const auto t = f[i+j+b] * w;
            
            f[i+j] = s + t;
            f[i+j+b] = s - t;
          }
          w *= BASE[__builtin_ctz(k)];
        }
      }
    }
  }

  template <typename U>
  std::vector<T> run_convolution(std::vector<U> f, std::vector<U> g){
    const int m = f.size() + g.size() - 1;
    int n = 1;
    while(n < m) n *= 2;

    std::vector<T> f2(n), g2(n);

    for(int i = 0; i < (int)f.size(); ++i) f2[i] = f[i];
    for(int i = 0; i < (int)g.size(); ++i) g2[i] = g[i];
    
    run_ntt(f2);
    run_ntt(g2);
    
    for(int i = 0; i < n; ++i) f2[i] *= g2[i];
    run_ntt(f2, true);
    
    return f2;
  }
};



using mint = ModInt<998244353>;
constexpr int PRIM_ROOT = 3;


int main(){
  int N, Q;

  while(std::cin >> N >> Q){
    auto A = input_vector<int>(N);
    auto B = input_vector<int>(Q);


    auto ntt = NumberTheoreticTransform<mint, PRIM_ROOT, 1 << 20>();

    std::vector<mint> f = {1};

    for(auto x : A){
      std::vector<mint> g = {x - 1, 1};
      
      f = ntt.run_convolution(f, g);
      if((int)f.size() > N+1) f.resize(N+1);
    }
    
    for(auto &x : B){
      std::cout << f[x] << "\n";
    }
  }

  return 0;
}
0