結果

問題 No.650 行列木クエリ
ユーザー ei1333333ei1333333
提出日時 2020-06-11 21:54:53
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 98 ms / 2,000 ms
コード長 13,142 bytes
コンパイル時間 2,598 ms
コンパイル使用メモリ 225,208 KB
実行使用メモリ 23,040 KB
最終ジャッジ日時 2024-06-24 03:22:24
合計ジャッジ時間 3,741 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 33 ms
6,528 KB
testcase_02 AC 98 ms
18,304 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 34 ms
6,400 KB
testcase_05 AC 95 ms
18,304 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 32 ms
7,424 KB
testcase_09 AC 74 ms
23,040 KB
testcase_10 AC 2 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>

using namespace std;

using int64 = long long;
const int mod = 1e9 + 7;
// const int mod = 998244353;

const int64 infll = (1LL << 62) - 1;
const int inf = (1 << 30) - 1;

struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios::sync_with_stdio(false);
    cout << fixed << setprecision(10);
    cerr << fixed << setprecision(10);
  }
} iosetup;


template< typename T1, typename T2 >
ostream &operator<<(ostream &os, const pair< T1, T2 > &p) {
  os << p.first << " " << p.second;
  return os;
}

template< typename T1, typename T2 >
istream &operator>>(istream &is, pair< T1, T2 > &p) {
  is >> p.first >> p.second;
  return is;
}

template< typename T >
ostream &operator<<(ostream &os, const vector< T > &v) {
  for(int i = 0; i < (int) v.size(); i++) {
    os << v[i] << (i + 1 != v.size() ? " " : "");
  }
  return os;
}

template< typename T >
istream &operator>>(istream &is, vector< T > &v) {
  for(T &in : v) is >> in;
  return is;
}

template< typename T1, typename T2 >
inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); }

template< typename T1, typename T2 >
inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); }

template< typename T = int64 >
vector< T > make_v(size_t a) {
  return vector< T >(a);
}

template< typename T, typename... Ts >
auto make_v(size_t a, Ts... ts) {
  return vector< decltype(make_v< T >(ts...)) >(a, make_v< T >(ts...));
}

template< typename T, typename V >
typename enable_if< is_class< T >::value == 0 >::type fill_v(T &t, const V &v) {
  t = v;
}

template< typename T, typename V >
typename enable_if< is_class< T >::value != 0 >::type fill_v(T &t, const V &v) {
  for(auto &e : t) fill_v(e, v);
}

template< typename F >
struct FixPoint : F {
  FixPoint(F &&f) : F(forward< F >(f)) {}

  template< typename... Args >
  decltype(auto) operator()(Args &&... args) const {
    return F::operator()(*this, forward< Args >(args)...);
  }
};

template< typename F >
inline decltype(auto) MFP(F &&f) {
  return FixPoint< F >{forward< F >(f)};
}


template< class T, size_t N >
struct SquareMatrix {
  array< array< T, N >, N > A;

  SquareMatrix() = default;

  size_t size() { return N; }

  inline const array< T, N > &operator[](int k) const {
    return (A.at(k));
  }

  inline array< T, N > &operator[](int k) {
    return (A.at(k));
  }

  static SquareMatrix add_identity() {
    return SquareMatrix();
  }

  static SquareMatrix mul_identity() {
    SquareMatrix mat;
    for(size_t i = 0; i < N; i++) mat[i][i] = 1;
    return mat;
  }

  SquareMatrix &operator+=(const SquareMatrix &B) {
    for(size_t i = 0; i < N; i++) {
      for(size_t j = 0; j < N; j++) {
        (*this)[i][j] += B[i][j];
      }
    }
    return *this;
  }

  SquareMatrix &operator-=(const SquareMatrix &B) {
    for(size_t i = 0; i < N; i++) {
      for(size_t j = 0; j < N; j++) {
        (*this)[i][j] -= B[i][j];
      }
    }
    return *this;
  }

  SquareMatrix &operator*=(const SquareMatrix &B) {
    array< array< T, N >, N > C;
    for(size_t i = 0; i < N; i++) {
      for(size_t j = 0; j < N; j++) {
        for(size_t k = 0; k < N; k++) {
          C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]);
        }
      }
    }
    A.swap(C);
    return (*this);
  }

  SquareMatrix &operator^=(uint64_t k) {
    SquareMatrix B = SquareMatrix::mul_identity();
    while(k > 0) {
      if(k & 1) B *= *this;
      *this *= *this;
      k >>= 1LL;
    }
    A.swap(B.A);
    return *this;
  }

  SquareMatrix operator+(const SquareMatrix &B) const {
    return SquareMatrix(*this) += B;
  }

  SquareMatrix operator-(const SquareMatrix &B) const {
    return SquareMatrix(*this) -= B;
  }

  SquareMatrix operator*(const SquareMatrix &B) const {
    return SquareMatrix(*this) *= B;
  }

  SquareMatrix operator^(uint64_t k) const {
    return SquareMatrix(*this) ^= k;
  }

  friend ostream &operator<<(ostream &os, SquareMatrix &p) {
    for(int i = 0; i < N; i++) {
      os << "[";
      for(int j = 0; j < N; j++) {
        os << p[i][j] << (j + 1 == N ? "]\n" : ",");
      }
    }
    return os;
  }
};

template< typename T = int >
struct Edge {
  int from, to;
  T cost;
  int idx;

  Edge() = default;

  Edge(int from, int to, T cost = 1, int idx = -1) : from(from), to(to), cost(cost), idx(idx) {}

  operator int() const { return to; }
};

template< typename T = int >
struct Graph {
  vector< vector< Edge< T > > > g;
  int es;

  Graph() = default;

  explicit Graph(int n) : g(n), es(0) {}

  size_t size() const {
    return g.size();
  }

  void add_directed_edge(int from, int to, T cost = 1) {
    g[from].emplace_back(from, to, cost, es++);
  }

  void add_edge(int from, int to, T cost = 1) {
    g[from].emplace_back(from, to, cost, es);
    g[to].emplace_back(to, from, cost, es++);
  }

  void read(int M, int padding = -1, bool weighted = false, bool directed = false) {
    for(int i = 0; i < M; i++) {
      int a, b;
      cin >> a >> b;
      a += padding;
      b += padding;
      T c = T(1);
      if(weighted) cin >> c;
      if(directed) add_directed_edge(a, b, c);
      else add_edge(a, b, c);
    }
  }
};

template< typename T = int >
using Edges = vector< Edge< T > >;

/**
 * @brief Heavy-Light-Decomposition(HL分解)
 * @see https://smijake3.hatenablog.com/entry/2019/09/15/200200
 */
template< typename T = int >
struct HeavyLightDecomposition : Graph< T > {
public:
  using Graph< T >::Graph;
  using Graph< T >::g;
  vector< int > sz, in, out, head, rev, par, dep;

  void build() {
    sz.assign(g.size(), 0);
    in.assign(g.size(), 0);
    out.assign(g.size(), 0);
    head.assign(g.size(), 0);
    rev.assign(g.size(), 0);
    par.assign(g.size(), 0);
    dep.assign(g.size(), 0);
    dfs_sz(0, -1, 0);
    int t = 0;
    dfs_hld(0, -1, t);
  }

  /* k: 0-indexed */
  int la(int v, int k) {
    while(1) {
      int u = head[v];
      if(in[v] - k >= in[u]) return rev[in[v] - k];
      k -= in[v] - in[u] + 1;
      v = par[u];
    }
  }

  int lca(int u, int v) const {
    for(;; v = par[head[v]]) {
      if(in[u] > in[v]) swap(u, v);
      if(head[u] == head[v]) return u;
    }
  }

  int dist(int u, int v) const {
    return dep[u] + dep[v] - 2 * dep[lca(u, v)];
  }

  template< typename E, typename Q, typename F, typename S >
  E query(int u, int v, const E &ti, const Q &q, const F &f, const S &s, bool edge = false) {
    E l = ti, r = ti;
    for(;; v = par[head[v]]) {
      if(in[u] > in[v]) swap(u, v), swap(l, r);
      if(head[u] == head[v]) break;
      l = f(q(in[head[v]], in[v] + 1), l);
    }
    return s(f(q(in[u] + edge, in[v] + 1), l), r);
  }

  template< typename E, typename Q, typename F >
  E query(int u, int v, const E &ti, const Q &q, const F &f, bool edge = false) {
    return query(u, v, ti, q, f, f, edge);
  }

  template< typename Q >
  void add(int u, int v, const Q &q, bool edge = false) {
    for(;; v = par[head[v]]) {
      if(in[u] > in[v]) swap(u, v);
      if(head[u] == head[v]) break;
      q(in[head[v]], in[v] + 1);
    }
    q(in[u] + edge, in[v] + 1);
  }

  /* {parent, child} */
  vector< pair< int, int > > compress(vector< int > &remark) {
    auto cmp = [&](int a, int b) { return in[a] < in[b]; };
    sort(begin(remark), end(remark), cmp);
    remark.erase(unique(begin(remark), end(remark)), end(remark));
    int K = (int) remark.size();
    for(int k = 1; k < K; k++) remark.emplace_back(lca(remark[k - 1], remark[k]));
    sort(begin(remark), end(remark), cmp);
    remark.erase(unique(begin(remark), end(remark)), end(remark));
    vector< pair< int, int > > es;
    stack< int > st;
    for(auto &k : remark) {
      while(!st.empty() && out[st.top()] <= in[k]) st.pop();
      if(!st.empty()) es.emplace_back(st.top(), k);
      st.emplace(k);
    }
    return es;
  }

  explicit HeavyLightDecomposition(const Graph< T > &g) : Graph< T >(g) {}

private:
  void dfs_sz(int idx, int p, int d) {
    dep[idx] = d;
    par[idx] = p;
    sz[idx] = 1;
    if(g[idx].size() && g[idx][0] == p) swap(g[idx][0], g[idx].back());
    for(auto &to : g[idx]) {
      if(to == p) continue;
      dfs_sz(to, idx, d + 1);
      sz[idx] += sz[to];
      if(sz[g[idx][0]] < sz[to]) swap(g[idx][0], to);
    }
  }

  void dfs_hld(int idx, int p, int &times) {
    in[idx] = times++;
    rev[in[idx]] = idx;
    for(auto &to : g[idx]) {
      if(to == p) continue;
      head[to] = (g[idx][0] == to ? head[idx] : to);
      dfs_hld(to, idx, times);
    }
    out[idx] = times;
  }
};

template< typename Monoid >
struct SegmentTree {
  using F = function< Monoid(Monoid, Monoid) >;

  int sz;
  vector< Monoid > seg;

  const F f;
  const Monoid M1;

  SegmentTree(int n, const F f, const Monoid &M1) : f(f), M1(M1) {
    sz = 1;
    while(sz < n) sz <<= 1;
    seg.assign(2 * sz, M1);
  }

  void set(int k, const Monoid &x) {
    seg[k + sz] = x;
  }

  void build() {
    for(int k = sz - 1; k > 0; k--) {
      seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
    }
  }

  void update(int k, const Monoid &x) {
    k += sz;
    seg[k] = x;
    while(k >>= 1) {
      seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
    }
  }

  Monoid query(int a, int b) {
    Monoid L = M1, R = M1;
    for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
      if(a & 1) L = f(L, seg[a++]);
      if(b & 1) R = f(seg[--b], R);
    }
    return f(L, R);
  }

  Monoid operator[](const int &k) const {
    return seg[k + sz];
  }

  template< typename C >
  int find_subtree(int a, const C &check, Monoid &M, bool type) {
    while(a < sz) {
      Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]);
      if(check(nxt)) a = 2 * a + type;
      else M = nxt, a = 2 * a + 1 - type;
    }
    return a - sz;
  }


  template< typename C >
  int find_first(int a, const C &check) {
    Monoid L = M1;
    if(a <= 0) {
      if(check(f(L, seg[1]))) return find_subtree(1, check, L, false);
      return -1;
    }
    int b = sz;
    for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
      if(a & 1) {
        Monoid nxt = f(L, seg[a]);
        if(check(nxt)) return find_subtree(a, check, L, false);
        L = nxt;
        ++a;
      }
    }
    return -1;
  }

  template< typename C >
  int find_last(int b, const C &check) {
    Monoid R = M1;
    if(b >= sz) {
      if(check(f(seg[1], R))) return find_subtree(1, check, R, true);
      return -1;
    }
    int a = sz;
    for(b += sz; a < b; a >>= 1, b >>= 1) {
      if(b & 1) {
        Monoid nxt = f(seg[--b], R);
        if(check(nxt)) return find_subtree(b, check, R, true);
        R = nxt;
      }
    }
    return -1;
  }
};

template< int mod >
struct ModInt {
  int x;

  ModInt() : x(0) {}

  ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}

  ModInt &operator+=(const ModInt &p) {
    if((x += p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator-=(const ModInt &p) {
    if((x += mod - p.x) >= mod) x -= mod;
    return *this;
  }

  ModInt &operator*=(const ModInt &p) {
    x = (int) (1LL * x * p.x % mod);
    return *this;
  }

  ModInt &operator/=(const ModInt &p) {
    *this *= p.inverse();
    return *this;
  }

  ModInt operator-() const { return ModInt(-x); }

  ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }

  ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }

  ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }

  ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }

  bool operator==(const ModInt &p) const { return x == p.x; }

  bool operator!=(const ModInt &p) const { return x != p.x; }

  ModInt inverse() const {
    int a = x, b = mod, u = 1, v = 0, t;
    while(b > 0) {
      t = a / b;
      swap(a -= t * b, b);
      swap(u -= t * v, v);
    }
    return ModInt(u);
  }

  ModInt pow(int64_t n) const {
    ModInt ret(1), mul(x);
    while(n > 0) {
      if(n & 1) ret *= mul;
      mul *= mul;
      n >>= 1;
    }
    return ret;
  }

  friend ostream &operator<<(ostream &os, const ModInt &p) {
    return os << p.x;
  }

  friend istream &operator>>(istream &is, ModInt &a) {
    int64_t t;
    is >> t;
    a = ModInt< mod >(t);
    return (is);
  }

  static int get_mod() { return mod; }
};

using modint = ModInt< mod >;

int main() {
  int N;
  cin >> N;
  vector< int > X(N), Y(N);
  HeavyLightDecomposition<> g(N);
  for(int i = 1; i < N; i++) {
    cin >> X[i] >> Y[i];
    g.add_edge(X[i], Y[i]);
  }
  g.build();
  for(int i = 1; i < N; i++) {
    if(g.in[X[i]] > g.in[Y[i]]) swap(X[i], Y[i]);
  }
  using Mat = SquareMatrix< modint, 2 >;
  auto f = [](const Mat &a, const Mat &b) { return a * b; };
  SegmentTree< Mat > seg(N, f, Mat::mul_identity());
  int Q;
  cin >> Q;
  while(Q--) {
    char x;
    cin >> x;
    if(x == 'x') {
      int v;
      cin >> v;
      Mat m;
      cin >> m[0][0] >> m[0][1] >> m[1][0] >> m[1][1];
      seg.update(g.in[Y[v + 1]], m);
    } else {
      int y, z;
      cin >> y >> z;
      auto mat = g.query(y, z, Mat::mul_identity(), [&](int a, int b) { return seg.query(a, b); }, f, true);
      cout << mat[0][0] << " " << mat[0][1] << " " << mat[1][0] << " " << mat[1][1] << "\n";
    }
  }
}
0