結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
stoq
|
| 提出日時 | 2020-06-12 19:08:29 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,462 bytes |
| コンパイル時間 | 2,700 ms |
| コンパイル使用メモリ | 198,268 KB |
| 最終ジャッジ日時 | 2025-01-11 01:59:17 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 4 WA * 6 |
ソースコード
#define MOD_TYPE 2
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
/*
#include <boost/multiprecision/cpp_int.hpp>
#include <boost/multiprecision/cpp_dec_float.hpp>
using multiInt = boost::multiprecision::cpp_int;
using lld = boost::multiprecision::cpp_dec_float_100;
*/
/*
#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
*/
using ll = long long int;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
using pld = pair<ld, ld>;
template <typename Q_type>
using smaller_queue = priority_queue<Q_type, vector<Q_type>, greater<Q_type>>;
constexpr ll MOD = (MOD_TYPE == 1 ? (ll)(1e9 + 7) : 998244353);
//constexpr ll MOD = 1;
constexpr int INF = (int)1e9;
constexpr ll LINF = (ll)4e18;
constexpr double PI = acos(-1.0);
constexpr double EPS = 1e-10;
constexpr int Dx[] = {0, 0, -1, 1, -1, 1, -1, 1, 0};
constexpr int Dy[] = {1, -1, 0, 0, -1, -1, 1, 1, 0};
#define REP(i, m, n) for (ll i = m; i < (ll)(n); ++i)
#define rep(i, n) REP(i, 0, n)
#define REPI(i, m, n) for (int i = m; i < (int)(n); ++i)
#define repi(i, n) REPI(i, 0, n)
#define MP make_pair
#define MT make_tuple
#define YES(n) cout << ((n) ? "YES" : "NO") << "\n"
#define Yes(n) cout << ((n) ? "Yes" : "No") << "\n"
#define possible(n) cout << ((n) ? "possible" : "impossible") << "\n"
#define Possible(n) cout << ((n) ? "Possible" : "Impossible") << "\n"
#define Yay(n) cout << ((n) ? "Yay!" : ":(") << "\n"
#define all(v) v.begin(), v.end()
#define NP(v) next_permutation(all(v))
#define dbg(x) cerr << #x << ":" << x << "\n";
inline void init_main()
{
cin.tie(0);
ios::sync_with_stdio(false);
cout << setprecision(30) << setiosflags(ios::fixed);
}
template <typename T>
inline bool chmin(T &a, T b)
{
if (a > b)
{
a = b;
return true;
}
return false;
}
template <typename T>
inline bool chmax(T &a, T b)
{
if (a < b)
{
a = b;
return true;
}
return false;
}
inline ll CEIL(ll a, ll b)
{
return (a + b - 1) / b;
}
template <typename A, size_t N, typename T>
inline void Fill(A (&array)[N], const T &val)
{
fill((T *)array, (T *)(array + N), val);
}
template <typename T, typename U>
constexpr ostream &operator<<(ostream &os, pair<T, U> &p) noexcept
{
os << p.first << " " << p.second;
return os;
}
#pragma endregion
ll modpow(ll a, ll n, ll m)
{
ll res = 1;
while (n > 0)
{
if (n & 1)
res = res * a % m;
n >>= 1;
a = a * a % m;
}
return res;
}
// Miller–Rabin
bool is_prime(ll n)
{
if (n == 2)
return true;
if (n <= 1 or (n & 1) == 0)
return false;
ll d = n - 1;
while ((d & 1) == 0)
d >>= 1;
vector<ll> v;
if (n < 4'759'123'141)
{
v = {2, 7, 61};
}
else if (n < 341'550'071'728'321)
{
v = {2, 3, 5, 7, 11, 13, 17};
}
else
{
static random_device seed_gen;
static mt19937_64 engine(seed_gen());
static const int sim_times = 10000;
for (int i = 0; i < sim_times; ++i)
v.emplace_back(engine() % (n - 1) + 1);
}
for (ll a : v)
{
if (a >= n)
continue;
ll t = d;
ll y = modpow(a, t, n);
while (t != n - 1 and y != 1 and y != n - 1)
{
y = y * y % n;
t <<= 1;
}
if (y != n - 1 and (t & 1) == 0)
return false;
}
return true;
}
void solve()
{
ll n;
cin >> n;
rep(i, n)
{
ll x;
cin >> x;
cout << x << " " << is_prime(x) << "\n";
}
}
int main()
{
init_main();
solve();
return 0;
}
stoq