結果
| 問題 |
No.1102 Remnants
|
| コンテスト | |
| ユーザー |
nehan_der_thal
|
| 提出日時 | 2020-07-03 21:58:05 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,498 bytes |
| コンパイル時間 | 280 ms |
| コンパイル使用メモリ | 82,316 KB |
| 実行使用メモリ | 123,108 KB |
| 最終ジャッジ日時 | 2024-09-17 00:44:57 |
| 合計ジャッジ時間 | 6,475 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 2 TLE * 1 -- * 22 |
ソースコード
MOD=10**9+7
k = 72
kk = k // 4
K = 1<<k
nu = lambda L: int("".join([hex(K+a)[3:] for a in L[::-1]]), 16)
st = lambda n: hex(n)[2:]
li = lambda s, l, r: [int(a, 16) % P if len(a) else 0 for a in [s[-(i+1)*kk:-i*kk] for i in range(l, r)]]
def div(a, b):
return a*modinv(b)%MOD
def modinv(a):
b, u, v = MOD, 1, 0
while b:
t = a//b
a, u = a-t*b, u-t*v
a, b, u, v = b, a, v, u
u %= MOD
return u
def grow(d, v, h):
h += [0] * d
f = [(-1 if (i+d) % 2 else 1) * fainv[i] * fainv[d-i] % P * h[i] % P for i in range(d+1)]
nuf = nu(f)
a = d * inv[v] % P
t = [1] * (3*d+3)
for i in range(1, 3*d+3): t[i] = t[i-1] * (a - d + i - 1) % P
ti = [1] * (3*d+3)
ti[-1] = pow(t[-1], P-2, P)
for i in range(1, 3*d+3)[::-1]: ti[i-1] = ti[i] * (a - d + i - 1) % P
iv = [1] * (3*d+3)
for i in range(1, 3*d+3):
iv[i] = ti[i] * t[i-1] % P
###
g = [inv[i] for i in range(1, 2*d+2)]
fg = li(st(nuf * nu(g)), d, d * 2 + 1)
for i in range(d):
h[i+d+1] = fg[i] * fa[d+i+1] % P * fainv[i] % P
###
g = [iv[i] for i in range(1, 2*d+2)]
fg = li(st(nuf * nu(g)), d, d * 2 + 1)
for i in range(d+1):
h[i] = h[i] * (fg[i] * t[d+i+1] % P * ti[i] % P) % P
###
g = [iv[i] for i in range(d+2, 3*d+3)]
fg = li(st(nuf * nu(g)), d, d * 2 + 1)
for i in range(d):
h[i+d+1] = h[i+d+1] * (fg[i] * t[2*d+i+2] % P * ti[d+i+1] % P) % P
return h
# Create a table of the factorial of the first v+2 multiples of v, i.e., [0!, v!, 2v!, ..., (v(v+1))!]
def create_table(v):
s = 1
X = [1, v+1]
while s < v:
X = grow(s, v, X)
s *= 2
table = [1]
for x in X:
table.append(table[-1] * x % P)
return table
def fact(i, table):
a = table[i//v]
for j in range(i//v*v+1, i+1):
a = a * j % P
return a
P = 10**9+7
N = 10**8
v = 1 << (N.bit_length() + 1) // 2
fa = [1] * (2*v+2)
fainv = [1] * (2*v+2)
for i in range(2*v+1):
fa[i+1] = fa[i] * (i+1) % P
fainv[-1] = pow(fa[-1], P-2, P)
for i in range(2*v+1)[::-1]:
fainv[i] = fainv[i+1] * (i+1) % P
inv = [0] * (2*v+2)
for i in range(1, 2*v+2):
inv[i] = fainv[i] * fa[i-1] % P
T = create_table(v)
C = lambda n, k: div(fact(n, T), fact(k, T) * fact(n-k, T))
import sys;input=sys.stdin.readline
N, M = map(int, input().split())
X = list(map(int, input().split()))
R = 0
for i in range(N):
R = (R + ((X[i]*C(i+M, i))%P)*C(N-i+M-1, N-i-1)) % P
print(R)
nehan_der_thal