結果
| 問題 | 
                            No.1094 木登り / Climbing tree
                             | 
                    
| ユーザー | 
                             | 
                    
| 提出日時 | 2020-08-02 14:25:23 | 
| 言語 | C++17  (gcc 13.3.0 + boost 1.87.0)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 525 ms / 2,000 ms | 
| コード長 | 3,296 bytes | 
| コンパイル時間 | 1,201 ms | 
| コンパイル使用メモリ | 83,184 KB | 
| 最終ジャッジ日時 | 2025-01-12 13:17:56 | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge1 / judge5 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 1 | 
| other | AC * 26 | 
ソースコード
#include <iostream>
#include <vector>
template <class Cost = int>
struct Edge {
    int src, dst;
    Cost cost;
    Edge(int src = -1, int dst = -1, Cost cost = 1)
        : src(src), dst(dst), cost(cost){};
    bool operator<(const Edge<Cost>& e) const { return this->cost < e.cost; }
    bool operator>(const Edge<Cost>& e) const { return this->cost > e.cost; }
};
template <class Cost = int>
struct Graph {
    std::vector<std::vector<Edge<Cost>>> graph;
    Graph(int n = 0) : graph(n) {}
    void span(bool direct, int src, int dst, Cost cost = 1) {
        graph[src].emplace_back(src, dst, cost);
        if (!direct) graph[dst].emplace_back(dst, src, cost);
    }
    int size() const { return graph.size(); }
    void clear() { graph.clear(); }
    void resize(int n) { graph.resize(n); }
    std::vector<Edge<Cost>>& operator[](int v) { return graph[v]; }
    std::vector<Edge<Cost>> operator[](int v) const { return graph[v]; }
};
template <class Cost = int>
struct LevelAncestor {
    Graph<Cost> tree;
    std::vector<std::vector<int>> par;
    std::vector<int> depth;
    std::vector<Cost> cdepth;
    int kmax;
    void dfs(int v, int p = -1, int d = 0, Cost c = 0) {
        par[v][0] = p;
        depth[v] = d;
        cdepth[v] = c;
        for (const auto& e : tree[v]) {
            if (e.dst == p) continue;
            dfs(e.dst, v, d + 1, c + e.cost);
        }
    }
    LevelAncestor(const Graph<Cost>& tree, int root)
        : tree(tree), par(tree.size()), depth(tree.size(), -1), cdepth(tree.size()) {
        kmax = 0;
        while ((1 << kmax) < (int)tree.size()) ++kmax;
        for (auto& v : par) v.resize(kmax + 1);
        dfs(root);
        for (int k = 1; k <= kmax; ++k) {
            for (int v = 0; v < tree.size(); ++v) {
                int p = par[v][k - 1];
                par[v][k] = (p == -1 ? -1 : par[p][k - 1]);
            }
        }
    }
    int climb(int v, int d) const {
        for (int k = kmax; k >= 0 && v != -1; --k) {
            if ((1 << k) > d) continue;
            v = par[v][k];
            d -= (1 << k);
        }
        return v;
    }
    int lca(int u, int v) const {
        if (depth[u] < depth[v]) std::swap(u, v);
        if (depth[u] > depth[v]) {
            u = climb(u, depth[u] - depth[v]);
        }
        if (u == v) return u;
        for (int k = kmax; k >= 0; --k) {
            if (par[u][k] != par[v][k]) {
                u = par[u][k];
                v = par[v][k];
            }
        }
        return par[u][0];
    }
    int dist(int u, int v) const {
        int p = lca(u, v);
        return depth[u] + depth[v] - depth[p] * 2;
    }
    Cost cdist(int u, int v) const {
        int p = lca(u, v);
        return cdepth[u] + cdepth[v] - cdepth[p] * 2;
    }
};
void solve() {
    int n;
    std::cin >> n;
    Graph<int> graph(n);
    for (int i = 0; i < n - 1; ++i) {
        int u, v, c;
        std::cin >> u >> v >> c;
        graph.span(false, --u, --v, c);
    }
    LevelAncestor<int> la(graph, 0);
    int q;
    std::cin >> q;
    while (q--) {
        int u, v;
        std::cin >> u >> v;
        std::cout << la.cdist(--u, --v) << "\n";
    }
}
int main() {
    std::cin.tie(nullptr);
    std::ios::sync_with_stdio(false);
    solve();
    return 0;
}