結果
問題 |
No.1094 木登り / Climbing tree
|
ユーザー |
|
提出日時 | 2020-08-02 14:25:23 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 525 ms / 2,000 ms |
コード長 | 3,296 bytes |
コンパイル時間 | 1,201 ms |
コンパイル使用メモリ | 83,184 KB |
最終ジャッジ日時 | 2025-01-12 13:17:56 |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 1 |
other | AC * 26 |
ソースコード
#include <iostream> #include <vector> template <class Cost = int> struct Edge { int src, dst; Cost cost; Edge(int src = -1, int dst = -1, Cost cost = 1) : src(src), dst(dst), cost(cost){}; bool operator<(const Edge<Cost>& e) const { return this->cost < e.cost; } bool operator>(const Edge<Cost>& e) const { return this->cost > e.cost; } }; template <class Cost = int> struct Graph { std::vector<std::vector<Edge<Cost>>> graph; Graph(int n = 0) : graph(n) {} void span(bool direct, int src, int dst, Cost cost = 1) { graph[src].emplace_back(src, dst, cost); if (!direct) graph[dst].emplace_back(dst, src, cost); } int size() const { return graph.size(); } void clear() { graph.clear(); } void resize(int n) { graph.resize(n); } std::vector<Edge<Cost>>& operator[](int v) { return graph[v]; } std::vector<Edge<Cost>> operator[](int v) const { return graph[v]; } }; template <class Cost = int> struct LevelAncestor { Graph<Cost> tree; std::vector<std::vector<int>> par; std::vector<int> depth; std::vector<Cost> cdepth; int kmax; void dfs(int v, int p = -1, int d = 0, Cost c = 0) { par[v][0] = p; depth[v] = d; cdepth[v] = c; for (const auto& e : tree[v]) { if (e.dst == p) continue; dfs(e.dst, v, d + 1, c + e.cost); } } LevelAncestor(const Graph<Cost>& tree, int root) : tree(tree), par(tree.size()), depth(tree.size(), -1), cdepth(tree.size()) { kmax = 0; while ((1 << kmax) < (int)tree.size()) ++kmax; for (auto& v : par) v.resize(kmax + 1); dfs(root); for (int k = 1; k <= kmax; ++k) { for (int v = 0; v < tree.size(); ++v) { int p = par[v][k - 1]; par[v][k] = (p == -1 ? -1 : par[p][k - 1]); } } } int climb(int v, int d) const { for (int k = kmax; k >= 0 && v != -1; --k) { if ((1 << k) > d) continue; v = par[v][k]; d -= (1 << k); } return v; } int lca(int u, int v) const { if (depth[u] < depth[v]) std::swap(u, v); if (depth[u] > depth[v]) { u = climb(u, depth[u] - depth[v]); } if (u == v) return u; for (int k = kmax; k >= 0; --k) { if (par[u][k] != par[v][k]) { u = par[u][k]; v = par[v][k]; } } return par[u][0]; } int dist(int u, int v) const { int p = lca(u, v); return depth[u] + depth[v] - depth[p] * 2; } Cost cdist(int u, int v) const { int p = lca(u, v); return cdepth[u] + cdepth[v] - cdepth[p] * 2; } }; void solve() { int n; std::cin >> n; Graph<int> graph(n); for (int i = 0; i < n - 1; ++i) { int u, v, c; std::cin >> u >> v >> c; graph.span(false, --u, --v, c); } LevelAncestor<int> la(graph, 0); int q; std::cin >> q; while (q--) { int u, v; std::cin >> u >> v; std::cout << la.cdist(--u, --v) << "\n"; } } int main() { std::cin.tie(nullptr); std::ios::sync_with_stdio(false); solve(); return 0; }