結果

問題 No.1203 お菓子ゲーム
ユーザー hitonanodehitonanode
提出日時 2020-08-28 22:50:34
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 6,402 bytes
コンパイル時間 2,438 ms
コンパイル使用メモリ 216,612 KB
実行使用メモリ 48,376 KB
最終ジャッジ日時 2024-11-14 01:43:52
合計ジャッジ時間 18,358 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 276 ms
47,996 KB
testcase_01 AC 270 ms
47,608 KB
testcase_02 AC 267 ms
46,976 KB
testcase_03 AC 274 ms
47,740 KB
testcase_04 AC 271 ms
46,716 KB
testcase_05 AC 278 ms
46,972 KB
testcase_06 AC 280 ms
46,720 KB
testcase_07 AC 280 ms
47,608 KB
testcase_08 AC 271 ms
46,844 KB
testcase_09 AC 275 ms
47,228 KB
testcase_10 AC 283 ms
47,224 KB
testcase_11 AC 269 ms
47,740 KB
testcase_12 AC 272 ms
47,612 KB
testcase_13 AC 273 ms
47,232 KB
testcase_14 AC 280 ms
46,972 KB
testcase_15 AC 284 ms
46,840 KB
testcase_16 AC 274 ms
46,716 KB
testcase_17 AC 280 ms
46,588 KB
testcase_18 AC 268 ms
46,716 KB
testcase_19 AC 270 ms
46,972 KB
testcase_20 AC 273 ms
46,844 KB
testcase_21 WA -
testcase_22 AC 272 ms
47,224 KB
testcase_23 AC 271 ms
46,460 KB
testcase_24 AC 268 ms
46,460 KB
testcase_25 AC 261 ms
46,592 KB
testcase_26 WA -
testcase_27 AC 272 ms
46,844 KB
testcase_28 AC 269 ms
46,460 KB
testcase_29 AC 271 ms
47,612 KB
testcase_30 AC 302 ms
46,848 KB
testcase_31 AC 279 ms
46,588 KB
testcase_32 AC 273 ms
46,716 KB
testcase_33 AC 275 ms
46,456 KB
testcase_34 AC 280 ms
46,716 KB
testcase_35 AC 286 ms
46,592 KB
testcase_36 AC 274 ms
46,460 KB
testcase_37 AC 278 ms
47,740 KB
testcase_38 AC 280 ms
46,844 KB
testcase_39 AC 286 ms
46,716 KB
testcase_40 AC 282 ms
46,848 KB
testcase_41 AC 280 ms
46,976 KB
testcase_42 AC 275 ms
46,456 KB
testcase_43 AC 279 ms
46,716 KB
testcase_44 AC 279 ms
46,716 KB
testcase_45 AC 279 ms
47,360 KB
testcase_46 AC 281 ms
47,228 KB
testcase_47 AC 284 ms
47,224 KB
testcase_48 AC 276 ms
46,720 KB
testcase_49 AC 279 ms
48,376 KB
testcase_50 AC 271 ms
47,868 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios { fast_ios(){ cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(20); }; } fast_ios_;
#define ALL(x) (x).begin(), (x).end()
#define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++)
#define IFOR(i, begin, end) for(int i=(end)-1,i##_begin_=(begin);i>=i##_begin_;i--)
#define REP(i, n) FOR(i,0,n)
#define IREP(i, n) IFOR(i,0,n)
template <typename T> void ndarray(vector<T> &vec, int len) { vec.resize(len); }
template <typename T, typename... Args> void ndarray(vector<T> &vec, int len, Args... args) { vec.resize(len); for (auto &v : vec) ndarray(v, args...); }
template <typename V, typename T> void ndfill(V &x, const T &val) { x = val; }
template <typename V, typename T> void ndfill(vector<V> &vec, const T &val) { for (auto &v : vec) ndfill(v, val); }
template <typename T> bool chmax(T &m, const T q) { if (m < q) {m = q; return true;} else return false; }
template <typename T> bool chmin(T &m, const T q) { if (m > q) {m = q; return true;} else return false; }
template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2> &l, const pair<T1, T2> &r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T> vector<T> srtunq(vector<T> vec) { sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()); return vec; }
template <typename T> istream &operator>>(istream &is, vector<T> &vec) { for (auto &v : vec) is >> v; return is; }
template <typename T> ostream &operator<<(ostream &os, const vector<T> &vec) { os << '['; for (auto v : vec) os << v << ','; os << ']'; return os; }
#if __cplusplus >= 201703L
template <typename... T> istream &operator>>(istream &is, tuple<T...> &tpl) { std::apply([&is](auto &&... args) { ((is >> args), ...);}, tpl); return is; }
template <typename... T> ostream &operator<<(ostream &os, const tuple<T...> &tpl) { std::apply([&os](auto &&... args) { ((os << args << ','), ...);}, tpl); return os; }
#endif
template <typename T> ostream &operator<<(ostream &os, const deque<T> &vec) { os << "deq["; for (auto v : vec) os << v << ','; os << ']'; return os; }
template <typename T> ostream &operator<<(ostream &os, const set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_set<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T> ostream &operator<<(ostream &os, const unordered_multiset<T> &vec) { os << '{'; for (auto v : vec) os << v << ','; os << '}'; return os; }
template <typename T1, typename T2> ostream &operator<<(ostream &os, const pair<T1, T2> &pa) { os << '(' << pa.first << ',' << pa.second << ')'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
template <typename TK, typename TV> ostream &operator<<(ostream &os, const unordered_map<TK, TV> &mp) { os << '{'; for (auto v : mp) os << v.first << "=>" << v.second << ','; os << '}'; return os; }
#ifdef HITONANODE_LOCAL
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl
#else
#define dbg(x)
#endif

// Sieve of Eratosthenes
// (*this)[i] = (divisor of i, greater than 1)
// Example: [0, 1, 2, 3, 2, 5, 3, 7, 2, 3, 2, 11, ...]
// Complexity: Space O(MAXN), Time (construction) O(MAXNloglogMAXN)
struct SieveOfEratosthenes : std::vector<int>
{
    std::vector<int> primes;
    SieveOfEratosthenes(int MAXN) : std::vector<int>(MAXN + 1) {
        std::iota(begin(), end(), 0);
        for (int i = 2; i <= MAXN; i++) {
            if ((*this)[i] == i) {
                primes.push_back(i);
                for (int j = i; j <= MAXN; j += i) (*this)[j] = i;
            }
        }
    }
    using T = long long int;
    // Prime factorization for x <= MAXN^2
    // Complexity: O(log x)          (x <= MAXN)
    //             O(MAXN / logMAXN) (MAXN < x <= MAXN^2)
    std::map<T, int> Factorize(T x) {
        assert(x <= 1LL * (int(size()) - 1) * (int(size()) - 1));
        std::map<T, int> ret;
        if (x < int(size())) {
            while (x > 1) {
                ret[(*this)[x]]++;
                x /= (*this)[x];
            }
        }
        else {
            for (auto p : primes) {
                while (!(x % p)) x /= p, ret[p]++;
                if (x == 1) break;
            }
            if (x > 1) ret[x]++;
        }
        return ret;
    }
    std::vector<T> Divisors(T x) {
        std::vector<T> ret{1};
        for (auto p : Factorize(x)) {
            int n = ret.size();
            for (int i = 0; i < n; i++) {
                for (T a = 1, d = 1; d <= p.second; d++) {
                    a *= p.first;
                    ret.push_back(ret[i] * a);
                }
            }
        }
        return ret; // Not sorted
    }
    // Moebius function Table
    // return: [0=>0, 1=>1, 2=>-1, 3=>-1, 4=>0, 5=>-1, 6=>1, 7=>-1, 8=>0, ...]
    std::vector<int> GenerateMoebiusFunctionTable() {
        std::vector<int> ret(size());
        for (int i = 1; i < int(size()); i++) {
            if (i == 1) ret[i] = 1;
            else if ((i / (*this)[i]) % (*this)[i] == 0) ret[i] = 0;
            else ret[i] = -ret[i / (*this)[i]];
        }
        return ret;
    }
};
SieveOfEratosthenes sieve(10000000);
lint solve()
{
    lint X, Y;
    cin >> X >> Y;
    if (X * 2 >= Y) X = Y - X;
    if (X * 2 == Y) return 0;
    lint ret = 100000000 / Y;
    auto divs = sieve.Divisors(Y);
    for (auto x : divs) if (x % 2 and x >= 3)
    {
        lint m = x / 2;
        __int128 num = 2 * (m + 1) * m;
        num *= Y;
        __int128 den = 2 * m + 1;
        den *= X;
        if (num % den == 0 and num / den <= 100000000) ret++;
    }
    return ret;
}

int main()
{
    int S;
    cin >> S;
    while (S--) cout << solve() << '\n';
}
0