結果
| 問題 |
No.981 一般冪乗根
|
| ユーザー |
Kiri8128
|
| 提出日時 | 2020-09-04 01:42:48 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
AC
|
| 実行時間 | 156 ms / 6,000 ms |
| コード長 | 3,431 bytes |
| コンパイル時間 | 248 ms |
| コンパイル使用メモリ | 82,312 KB |
| 実行使用メモリ | 144,640 KB |
| 最終ジャッジ日時 | 2024-11-24 10:51:56 |
| 合計ジャッジ時間 | 69,912 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 40 TLE * 4 |
ソースコード
# Reference: https://yukicoder.me/submissions/192539
def gcd(a, b):
while b: a, b = b, a % b
return a
def isPrimeMR(n):
d = n - 1
d = d // (d & -d)
L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
for a in L:
t = d
y = pow(a, t, n)
if y == 1: continue
while y != n - 1:
y = y * y % n
if y == 1 or t == n - 1: return 0
t <<= 1
return 1
def findFactorRho(n):
m = 1 << n.bit_length() // 8
for c in range(1, 99):
f = lambda x: (x * x + c) % n
y, r, q, g = 2, 1, 1, 1
while g == 1:
x = y
for i in range(r):
y = f(y)
k = 0
while k < r and g == 1:
ys = y
for i in range(min(m, r - k)):
y = f(y)
q = q * abs(x - y) % n
g = gcd(q, n)
k += m
r <<= 1
if g == n:
g = 1
while g == 1:
ys = f(ys)
g = gcd(abs(x - ys), n)
if g < n:
if isPrimeMR(g): return g
elif isPrimeMR(n // g): return n // g
return findFactorRho(g)
def primeFactor(n):
i = 2
ret = {}
rhoFlg = 0
while i * i <= n:
k = 0
while n % i == 0:
n //= i
k += 1
if k: ret[i] = k
i += i % 2 + (3 if i % 3 == 1 else 1)
if i == 101 and n >= 2 ** 20:
while n > 1:
if isPrimeMR(n):
ret[n], n = 1, 1
else:
rhoFlg = 1
j = findFactorRho(n)
k = 0
while n % j == 0:
n //= j
k += 1
ret[j] = k
if n > 1: ret[n] = 1
if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
return ret
def inv(a, mod):
b = mod
s, u = 1, 0
while b:
q = a // b
a, b = b, a % b
s, u = u, s - q * u
assert a == 1
return s % mod
def sqrt_mod_prime_power(a, p, e, mod): # solve x^(p^e) = a
q = mod - 1
s = 0
while q % p == 0:
q //= p
s += 1
pe = p ** e
d = pow(-q, (p-1) * p ** (e-1) - 1, pe) * q
r = pow(a, (d + 1) // pe, mod)
t = pow(a, d, mod)
if t == 1: return r
ps = p ** (s - 1)
c = -1
z = 2
while 1:
c = pow(z, q, mod)
if pow(c, ps, mod) != 1:
break
z += 1
b = -1
while t != 1:
tmp = pow(t, p, mod)
s2 = 1
while tmp != 1:
tmp = pow(tmp, p, mod)
s2 += 1
if s2 + e <= s:
b = c
for _ in range(s - s2 - e):
b = pow(b, p, mod)
c = pow(b, pe, mod)
s = s2
r = r * b % mod
t = t * c % mod
return r
def sqrt_mod(a, n, p): # solve x^n = a (mod p)
assert n >= 1
a %= p
n %= p - 1
if a <= 1: return a
g = gcd(p - 1, n)
if pow(a, (p-1) // g, p) != 1:
return -1
a = pow(a, inv(n // g, (p-1) // g), p)
pf = primeFactor(g)
for pp in pf:
a = sqrt_mod_prime_power(a, pp, pf[pp], p)
return a
T = int(input())
for _ in range(T):
p, k, a = map(int, input().split())
print(sqrt_mod(a, k, p))
Kiri8128