結果
問題 | No.1218 Something Like a Theorem |
ユーザー | Kiri8128 |
提出日時 | 2020-09-04 21:40:35 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,066 bytes |
コンパイル時間 | 216 ms |
コンパイル使用メモリ | 82,332 KB |
実行使用メモリ | 54,860 KB |
最終ジャッジ日時 | 2024-11-26 12:14:24 |
合計ジャッジ時間 | 1,584 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 40 ms
54,120 KB |
testcase_01 | AC | 38 ms
54,380 KB |
testcase_02 | AC | 35 ms
54,860 KB |
testcase_03 | AC | 36 ms
54,632 KB |
testcase_04 | AC | 37 ms
53,500 KB |
testcase_05 | AC | 35 ms
52,960 KB |
testcase_06 | WA | - |
testcase_07 | AC | 37 ms
54,356 KB |
testcase_08 | AC | 36 ms
54,052 KB |
testcase_09 | WA | - |
testcase_10 | AC | 37 ms
53,764 KB |
testcase_11 | WA | - |
testcase_12 | AC | 36 ms
53,132 KB |
testcase_13 | AC | 36 ms
53,800 KB |
testcase_14 | AC | 37 ms
54,588 KB |
testcase_15 | AC | 35 ms
53,884 KB |
testcase_16 | AC | 35 ms
53,140 KB |
testcase_17 | AC | 36 ms
53,092 KB |
ソースコード
from math import atan2 def gcd(a, b): while b: a, b = b, a % b return a def isPrimeMR(n): d = n - 1 d = d // (d & -d) L = [2, 7, 61] if n < 1<<32 else [2, 3, 5, 7, 11, 13, 17] if n < 1<<48 else [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37] for a in L: t = d y = pow(a, t, n) if y == 1: continue while y != n - 1: y = y * y % n if y == 1 or t == n - 1: return 0 t <<= 1 return 1 def findFactorRho(n): m = 1 << n.bit_length() // 8 for c in range(1, 99): f = lambda x: (x * x + c) % n y, r, q, g = 2, 1, 1, 1 while g == 1: x = y for i in range(r): y = f(y) k = 0 while k < r and g == 1: ys = y for i in range(min(m, r - k)): y = f(y) q = q * abs(x - y) % n g = gcd(q, n) k += m r <<= 1 if g == n: g = 1 while g == 1: ys = f(ys) g = gcd(abs(x - ys), n) if g < n: if isPrimeMR(g): return g elif isPrimeMR(n // g): return n // g return findFactorRho(g) def primeFactor(n): i = 2 ret = {} rhoFlg = 0 while i * i <= n: k = 0 while n % i == 0: n //= i k += 1 if k: ret[i] = k i += i % 2 + (3 if i % 3 == 1 else 1) if i == 101 and n >= 2 ** 20: while n > 1: if isPrimeMR(n): ret[n], n = 1, 1 else: rhoFlg = 1 j = findFactorRho(n) k = 0 while n % j == 0: n //= j k += 1 ret[j] = k if n > 1: ret[n] = 1 if rhoFlg: ret = {x: ret[x] for x in sorted(ret)} return ret def divisors(N): pf = primeFactor(N) ret = [1] for p in pf: ret_prev = ret ret = [] for i in range(pf[p]+1): for r in ret_prev: ret.append(r * (p ** i)) return sorted(ret) def factor_prime(p): # find a, b such that a ** 2 + b ** 2 == p, given a prime p with p = 4n+1 for some n # assert isPrime(p) and p % 4 == 1 for i in range(p): if pow(i, (p-1) // 2, p) == p - 1: a, b = pow(i, (p-1) // 4, p), 1 break k = (a ** 2 + b ** 2) // p while k > 1: kk = k // 2 na, nb = (a + kk) % k - kk, (b + kk) % k - kk a, b = (a * na + b * nb) // k, (a * nb - b * na) // k k = (a ** 2 + b ** 2) // p return (abs(a), abs(b)) def factor(n): # find all the pairs of (a, b) such that a ** 2 + b ** 2 == n def mult(a, b): return (a[0] * b[0] - a[1] * b[1], a[0] * b[1] + a[1] * b[0]) def mult_all(L1, L2): nL = [] for l1 in L1: for l2 in L2: nL.append(mult(l1, l2)) return nL def conj(x): return (x[0], -x[1]) if n == 0: return [(0, 0)] pf = primeFactor(n) L = [(1, 0)] for p in pf: if p == 2: for _ in range(pf[p]): L = mult_all(L, [(1, 1)]) continue if p % 4 == 3: if pf[p] % 2: return [] L = mult_all(L, [(p ** (pf[p] // 2), 0)]) continue x = (1, 0) cL = [x] t = factor_prime(p) for _ in range(pf[p]): x = mult(x, t) cL.append(x) y = (1, 0) t = conj(t) for i in range(pf[p] + 1): cL[-i-1] = mult(cL[-i-1], y) y = mult(y, t) L = mult_all(L, cL) return sorted([mult(l, x) for l in L for x in ((1, 0), (0, 1), (-1, 0), (0, -1))], key = lambda x: -atan2(x[1], -x[0])) n, z = map(int, input().split()) if n == 1: print("Yes" if z >= 2 else "No") elif n > 2: print("No") else: l = factor(z ** n) print("Yes" if l else "No")