結果
問題 | No.1392 Don't be together |
ユーザー | chineristAC |
提出日時 | 2020-09-09 02:25:44 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 471 ms / 2,000 ms |
コード長 | 4,474 bytes |
コンパイル時間 | 370 ms |
コンパイル使用メモリ | 82,292 KB |
実行使用メモリ | 112,436 KB |
最終ジャッジ日時 | 2024-05-07 22:17:57 |
合計ジャッジ時間 | 9,203 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 67 ms
68,352 KB |
testcase_01 | AC | 60 ms
65,024 KB |
testcase_02 | AC | 77 ms
73,376 KB |
testcase_03 | AC | 62 ms
65,152 KB |
testcase_04 | AC | 73 ms
71,424 KB |
testcase_05 | AC | 66 ms
68,480 KB |
testcase_06 | AC | 471 ms
110,060 KB |
testcase_07 | AC | 274 ms
106,912 KB |
testcase_08 | AC | 406 ms
107,408 KB |
testcase_09 | AC | 413 ms
104,288 KB |
testcase_10 | AC | 310 ms
103,780 KB |
testcase_11 | AC | 321 ms
111,836 KB |
testcase_12 | AC | 317 ms
104,576 KB |
testcase_13 | AC | 319 ms
107,696 KB |
testcase_14 | AC | 308 ms
104,260 KB |
testcase_15 | AC | 336 ms
112,436 KB |
testcase_16 | AC | 332 ms
110,432 KB |
testcase_17 | AC | 303 ms
108,328 KB |
testcase_18 | AC | 333 ms
111,964 KB |
testcase_19 | AC | 318 ms
103,940 KB |
testcase_20 | AC | 203 ms
86,284 KB |
testcase_21 | AC | 164 ms
83,300 KB |
testcase_22 | AC | 304 ms
104,292 KB |
testcase_23 | AC | 219 ms
86,296 KB |
testcase_24 | AC | 221 ms
86,492 KB |
testcase_25 | AC | 226 ms
87,492 KB |
testcase_26 | AC | 166 ms
83,060 KB |
testcase_27 | AC | 213 ms
86,584 KB |
testcase_28 | AC | 222 ms
87,216 KB |
testcase_29 | AC | 215 ms
85,860 KB |
ソースコード
mod = 998244353 omega = pow(3,119,mod) rev_omega = pow(omega,mod-2,mod) def cmb(n, r, mod):#コンビネーションの高速計算 if ( r<0 or r>n ): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod N = 2*10**5 g1 = [1]*(N+1) # 元テーブル g2 = [1]*(N+1) #逆元テーブル inv = [1]*(N+1) #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1[i]=( ( g1[i-1] * i ) % mod ) inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod ) g2[i]=( (g2[i-1] * inv[i]) % mod ) inv[0]=0 def _ntt(f,L,reverse=False): F=[f[i] for i in range(L)] n = L.bit_length() - 1 base = omega if reverse: base = rev_omega if not n: return F size = 2**n wj = pow(base,2**22,mod) res = [0]*2**n for i in range(n,0,-1): use_omega = pow(base,2**(22+i-n),mod) res = [0]*2**n size //= 2 w = 1 for j in range(0,L//2,size): for a in range(size): res[a+j] = (F[a+2*j] + w * F[a+size+2*j]) % mod t = (w * wj) % mod res[L//2+a+j] = (F[a+2*j] + t * F[a+size+2*j]) % mod w = (w * use_omega) % mod F = res return res def ntt(f,L=0): l = len(f) if not L: L = 1<<((l-1).bit_length()) while len(f)<L: f.append(0) f=f[:L] F = _ntt(f,L) return F def intt(f,L=0): l = len(f) if not L: L = 1<<((l-1).bit_length()) while len(f)<L: f.append(0) f=f[:L] F = _ntt(f,L,reverse=True) inv = pow(L,mod-2,mod) for i in range(L): F[i] *= inv F[i] %= mod return F def convolve(f,g,limit): l = len(f)+len(g)-1 L = 1<<((l-1).bit_length()) F = ntt(f,L) G = ntt(g,L) H = [(F[i] * G[i]) % mod for i in range(L)] h = intt(H,L) return h[:limit] def inverse(f,limit): assert(f[0]!=0) l = len(f) L = 1<<((l-1).bit_length()) n = L.bit_length()-1 f = f[:L] f+=[0]*(L-len(f)) res = [pow(f[0],mod-2,mod)] for i in range(1,n+1): h = convolve(res,f[:2**i],2**i) h = [(-h[i]) % mod for i in range(2**i)] h[0] = (h[0]+2) % mod res = convolve(res,h,2**i) return res[:limit] def integral(f,limit): res = [0]+[(f[i] * inv[i+1]) % mod for i in range(len(f)-1)] return res[:limit] def diff(f,limit): res = [(f[i+1] * (i+1)) % mod for i in range(len(f)-1)]+[0] return res[:limit] def log(f,limit): res = convolve(diff(f,limit),inverse(f,limit),limit) return integral(res,limit) def exp(f,limit): l = len(f) L = 1<<((l-1).bit_length()) n = L.bit_length()-1 f = f[:L] f+=[0]*(L-len(f)) res = [1] for i in range(1,n+1): res += [0]*2**(i-1) g = log(res,2**i) h = [(f[j]-g[j])%mod for j in range(2**i)] h[0] = (h[0]+1) % mod res =convolve(res,h,2**i) return res[:limit] def poly_pow_exp(f,k,limit): l = len(f) L = 1<<((l-1).bit_length()) n = L.bit_length()-1 f = f[:L] f+=[0]*(L-len(f)) g = log(f,limit) g = [(k * g[i]) % mod for i in range(len(g))] h = exp(g,limit) return h[:limit] N,M = map(int,input().split()) P = list(map(int,input().split())) P = [P[i]-1 for i in range(N)] cycle = [] used = [False]*N for i in range(N): if not used[i]: used[i] = True c = 1 pos = i while not used[P[pos]]: pos = P[pos] used[pos] = True c += 1 cycle.append(c) n = len(cycle) binom_poly = [] for i in range(n): c = [cmb(cycle[i],j,mod) for j in range(1,cycle[i]+1)] for j in range(0,cycle[i],2): c[j] = (- c[j]) % mod c[0] = (c[0] + 1) % mod binom_poly.append(c) while True: if len(binom_poly)==1: break n_binom_poly = [] while binom_poly: f = binom_poly.pop() if not binom_poly: n_binom_poly.append(f) break g = binom_poly.pop() h = convolve(f,g,len(f)+len(g)-1) n_binom_poly.append(h) binom_poly = n_binom_poly poly_f = binom_poly[0] g = [g2[i+1] for i in range(N+1)] g = poly_pow_exp(g,M,N+1) poly_Stirling = [0 for i in range(N+1)] for i in range(N-M+1): poly_Stirling[i+M] = (g[i] * g1[i+M]) % mod poly_Stirling[i+M] = (g2[M] * poly_Stirling[i+M]) % mod ans = 0 for j in range(N-n+1): ans += poly_Stirling[n+j] * poly_f[j] ans %= mod print((ans*(-1)**N)%mod)