結果
| 問題 |
No.1392 Don't be together
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-09-10 00:32:19 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
AC
|
| 実行時間 | 706 ms / 2,000 ms |
| コード長 | 4,013 bytes |
| コンパイル時間 | 116 ms |
| コンパイル使用メモリ | 13,440 KB |
| 実行使用メモリ | 46,328 KB |
| 最終ジャッジ日時 | 2024-12-17 15:44:09 |
| 合計ジャッジ時間 | 23,125 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 27 |
ソースコード
mod = 998244353
omega = pow(3,119,mod)
rev_omega = pow(omega,mod-2,mod)
def cmb(n, r, mod):#コンビネーションの高速計算
if ( r<0 or r>n ):
return 0
r = min(r, n-r)
return g1[n] * g2[r] * g2[n-r] % mod
N = 2**13
g1 = [1]*(N+1) # 元テーブル
g2 = [1]*(N+1) #逆元テーブル
inv = [1]*(N+1) #逆元テーブル計算用テーブル
for i in range( 2, N + 1 ):
g1[i]=( ( g1[i-1] * i ) % mod )
inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod )
g2[i]=( (g2[i-1] * inv[i]) % mod )
inv[0]=0
inv_list = [inv[i] for i in range(N+1)]
mod = 998244353
import numpy as np
inv = np.array(inv,np.int64)
def convolve(f,g,limit):
fft_len =1
while 2*fft_len<len(f)+len(g)-1:
fft_len *= 2
fft_len *=2
Ff = np.fft.rfft(f,fft_len)
Fg = np.fft.rfft(g,fft_len)
Fh = Ff * Fg
h=np.fft.irfft(Fh,fft_len)
h= np.rint(h).astype(np.int64)
return h[:min(len(f)+len(g)-1,limit)]
def convolve2(f,g,limit,p=998244353):
f1,f2=np.divmod(f,1<<15)
g1,g2=np.divmod(g,1<<15)
a = convolve(f1,g1,limit)%p
c = convolve(f2,g2,limit)%p
b = (convolve(f1+f2,g1+g2,limit)-(a+c))%p
h = (a<<30) + (b<<15) +c
return h[:limit] % p
def inverse(f,limit):
g = np.array([pow(int(f[0]),mod-2,mod)],np.int64)
f = list(f)
n = (len(f)-1).bit_length()
F = f + [0]*(2**n-len(f))
f=np.array(F,np.int64)
for i in range(1,n+1):
h = convolve2(g,f[:2**i],2**i)
h = (-h) % mod
h[0] = (h[0] + 2) %mod
g = convolve2(g,h,2**i)
return g[:limit]
def integral(f,limit):
F = np.zeros(len(f),np.int64)
F[1:] = f[:len(f)-1] * inv[1:len(f)]
return (F % mod)[:limit]
def diff(f,limit):
arange = np.array([i for i in range(len(f))],np.int64)
res = (f * arange) % mod
res = np.resize(res[1:],limit)
res[-1] = 0
return res[:limit]
def log(f,limit):
res = convolve2(diff(f,limit),inverse(f,limit),limit)
return integral(res,limit)
def exp(f,limit):
l = len(f)
L = 1<<((l-1).bit_length())
n = L.bit_length()-1
f = np.resize(f,L)
f[L:] = 0
res = np.array([1],np.int64)
for i in range(1,n+1):
res = np.resize(res,2**i)
res[2**(i-1):] = 0
g = log(res,2**i)
h = (f[:2**i]-g[:2**i]) % mod
h[0] = (h[0] + 1) % mod
res = convolve2(res,h,2**i)
return res[:limit]
def pow_poly(f,k,limit):
l = len(f)
L = 1<<((l-1).bit_length())
n = L.bit_length()-1
f = np.resize(f,L)
f[L:] = 0
g = (k * log(f,limit)) % mod
h = exp(g,limit)
return h[:limit]
N,M = map(int,input().split())
P = list(map(int,input().split()))
P = [P[i]-1 for i in range(N)]
cycle = []
used = [False]*N
for i in range(N):
if not used[i]:
used[i] = True
c = 1
pos = i
while not used[P[pos]]:
pos = P[pos]
used[pos] = True
c += 1
cycle.append(c)
n = len(cycle)
a = [0]*(N+1)
for c in cycle:
a[c-1] += 1
f = [0 for i in range(N+1)]
for i in range(1,N+1):
if not a[i]:
continue
for j in range(1,N//i+1):
f[i*j] += -a[i] * inv_list[j]
f[i*j] %= mod
f = np.array(f,np.int64)
f = exp(f,N+1)
nf = np.array([0]*(N+1),np.int64)
nf[n:] = f[:N+1-n]
nf = (pow(-1,n)*nf) % mod
f = list(map(int,nf))
g = [(f[N-i] * g1[N-i]) % mod for i in range(N+1)]
e_x = [g2[i] for i in range(N+1)]
g = np.array(g,np.int64)
e_x = np.array(e_x,np.int64)
g_e_x = list(map(int,convolve2(g,e_x,N+1)))
f = [(g_e_x[N-i] * g2[i]) % mod for i in range(N+1)]
for i in range(1,N+1,2):
f[i] = (-f[i]) % mod
f = [f[i+n] for i in range(N-n+1)]
g = [g2[i+1] for i in range(N+1)]
g = np.array(g,np.int64)
res = pow_poly(g,M,N+1)
res = (res * g2[M]) % mod
res = list(res)
Res = [0 for i in range(N+1)]
for i in range(N-M+1):
Res[i+M] = (res[i] * g1[i+M]) % mod
poly_Stirling = Res
ans = 0
for j in range(N-n+1):
ans += poly_Stirling[n+j] * f[j]
ans %= mod
print((ans*(-1)**N)%mod)