結果
問題 | No.1392 Don't be together |
ユーザー | chineristAC |
提出日時 | 2020-09-10 00:32:19 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
AC
|
実行時間 | 684 ms / 2,000 ms |
コード長 | 4,013 bytes |
コンパイル時間 | 131 ms |
コンパイル使用メモリ | 13,440 KB |
実行使用メモリ | 46,196 KB |
最終ジャッジ日時 | 2024-05-09 21:35:55 |
合計ジャッジ時間 | 21,351 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 512 ms
45,692 KB |
testcase_01 | AC | 512 ms
45,940 KB |
testcase_02 | AC | 510 ms
45,688 KB |
testcase_03 | AC | 514 ms
45,684 KB |
testcase_04 | AC | 510 ms
45,936 KB |
testcase_05 | AC | 523 ms
45,936 KB |
testcase_06 | AC | 665 ms
45,820 KB |
testcase_07 | AC | 655 ms
45,816 KB |
testcase_08 | AC | 672 ms
45,552 KB |
testcase_09 | AC | 650 ms
46,068 KB |
testcase_10 | AC | 650 ms
46,060 KB |
testcase_11 | AC | 657 ms
45,808 KB |
testcase_12 | AC | 658 ms
45,812 KB |
testcase_13 | AC | 684 ms
46,196 KB |
testcase_14 | AC | 636 ms
45,556 KB |
testcase_15 | AC | 613 ms
46,060 KB |
testcase_16 | AC | 602 ms
45,940 KB |
testcase_17 | AC | 596 ms
45,936 KB |
testcase_18 | AC | 589 ms
45,940 KB |
testcase_19 | AC | 590 ms
45,916 KB |
testcase_20 | AC | 524 ms
45,432 KB |
testcase_21 | AC | 506 ms
45,692 KB |
testcase_22 | AC | 612 ms
46,144 KB |
testcase_23 | AC | 550 ms
45,816 KB |
testcase_24 | AC | 551 ms
45,684 KB |
testcase_25 | AC | 539 ms
45,436 KB |
testcase_26 | AC | 503 ms
45,808 KB |
testcase_27 | AC | 594 ms
45,556 KB |
testcase_28 | AC | 639 ms
45,564 KB |
testcase_29 | AC | 602 ms
45,688 KB |
ソースコード
mod = 998244353 omega = pow(3,119,mod) rev_omega = pow(omega,mod-2,mod) def cmb(n, r, mod):#コンビネーションの高速計算 if ( r<0 or r>n ): return 0 r = min(r, n-r) return g1[n] * g2[r] * g2[n-r] % mod N = 2**13 g1 = [1]*(N+1) # 元テーブル g2 = [1]*(N+1) #逆元テーブル inv = [1]*(N+1) #逆元テーブル計算用テーブル for i in range( 2, N + 1 ): g1[i]=( ( g1[i-1] * i ) % mod ) inv[i]=( ( -inv[mod % i] * (mod//i) ) % mod ) g2[i]=( (g2[i-1] * inv[i]) % mod ) inv[0]=0 inv_list = [inv[i] for i in range(N+1)] mod = 998244353 import numpy as np inv = np.array(inv,np.int64) def convolve(f,g,limit): fft_len =1 while 2*fft_len<len(f)+len(g)-1: fft_len *= 2 fft_len *=2 Ff = np.fft.rfft(f,fft_len) Fg = np.fft.rfft(g,fft_len) Fh = Ff * Fg h=np.fft.irfft(Fh,fft_len) h= np.rint(h).astype(np.int64) return h[:min(len(f)+len(g)-1,limit)] def convolve2(f,g,limit,p=998244353): f1,f2=np.divmod(f,1<<15) g1,g2=np.divmod(g,1<<15) a = convolve(f1,g1,limit)%p c = convolve(f2,g2,limit)%p b = (convolve(f1+f2,g1+g2,limit)-(a+c))%p h = (a<<30) + (b<<15) +c return h[:limit] % p def inverse(f,limit): g = np.array([pow(int(f[0]),mod-2,mod)],np.int64) f = list(f) n = (len(f)-1).bit_length() F = f + [0]*(2**n-len(f)) f=np.array(F,np.int64) for i in range(1,n+1): h = convolve2(g,f[:2**i],2**i) h = (-h) % mod h[0] = (h[0] + 2) %mod g = convolve2(g,h,2**i) return g[:limit] def integral(f,limit): F = np.zeros(len(f),np.int64) F[1:] = f[:len(f)-1] * inv[1:len(f)] return (F % mod)[:limit] def diff(f,limit): arange = np.array([i for i in range(len(f))],np.int64) res = (f * arange) % mod res = np.resize(res[1:],limit) res[-1] = 0 return res[:limit] def log(f,limit): res = convolve2(diff(f,limit),inverse(f,limit),limit) return integral(res,limit) def exp(f,limit): l = len(f) L = 1<<((l-1).bit_length()) n = L.bit_length()-1 f = np.resize(f,L) f[L:] = 0 res = np.array([1],np.int64) for i in range(1,n+1): res = np.resize(res,2**i) res[2**(i-1):] = 0 g = log(res,2**i) h = (f[:2**i]-g[:2**i]) % mod h[0] = (h[0] + 1) % mod res = convolve2(res,h,2**i) return res[:limit] def pow_poly(f,k,limit): l = len(f) L = 1<<((l-1).bit_length()) n = L.bit_length()-1 f = np.resize(f,L) f[L:] = 0 g = (k * log(f,limit)) % mod h = exp(g,limit) return h[:limit] N,M = map(int,input().split()) P = list(map(int,input().split())) P = [P[i]-1 for i in range(N)] cycle = [] used = [False]*N for i in range(N): if not used[i]: used[i] = True c = 1 pos = i while not used[P[pos]]: pos = P[pos] used[pos] = True c += 1 cycle.append(c) n = len(cycle) a = [0]*(N+1) for c in cycle: a[c-1] += 1 f = [0 for i in range(N+1)] for i in range(1,N+1): if not a[i]: continue for j in range(1,N//i+1): f[i*j] += -a[i] * inv_list[j] f[i*j] %= mod f = np.array(f,np.int64) f = exp(f,N+1) nf = np.array([0]*(N+1),np.int64) nf[n:] = f[:N+1-n] nf = (pow(-1,n)*nf) % mod f = list(map(int,nf)) g = [(f[N-i] * g1[N-i]) % mod for i in range(N+1)] e_x = [g2[i] for i in range(N+1)] g = np.array(g,np.int64) e_x = np.array(e_x,np.int64) g_e_x = list(map(int,convolve2(g,e_x,N+1))) f = [(g_e_x[N-i] * g2[i]) % mod for i in range(N+1)] for i in range(1,N+1,2): f[i] = (-f[i]) % mod f = [f[i+n] for i in range(N-n+1)] g = [g2[i+1] for i in range(N+1)] g = np.array(g,np.int64) res = pow_poly(g,M,N+1) res = (res * g2[M]) % mod res = list(res) Res = [0 for i in range(N+1)] for i in range(N-M+1): Res[i+M] = (res[i] * g1[i+M]) % mod poly_Stirling = Res ans = 0 for j in range(N-n+1): ans += poly_Stirling[n+j] * f[j] ans %= mod print((ans*(-1)**N)%mod)