結果
問題 | No.1232 2^x = x |
ユーザー | torisasami4 |
提出日時 | 2020-09-18 21:34:38 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 9,600 bytes |
コンパイル時間 | 1,895 ms |
コンパイル使用メモリ | 178,900 KB |
実行使用メモリ | 34,504 KB |
最終ジャッジ日時 | 2024-06-22 09:05:12 |
合計ジャッジ時間 | 2,387 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | AC | 13 ms
34,408 KB |
testcase_02 | AC | 13 ms
34,452 KB |
testcase_03 | AC | 12 ms
34,464 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; typedef long long ll; #define pb(x) push_back(x) #define mp(a, b) make_pair(a, b) #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define lscan(x) scanf("%I64d", &x) #define lprint(x) printf("%I64d", x) #define rep(i, n) for (int i = 0; i < (n); i++) #define rep2(i, n) for (int i = n - 1; i >= 0; i--) const int mod = 1e9 + 7; ll gcd(ll a, ll b) { ll c = a % b; while (c != 0) { a = b; b = c; c = a % b; } return b; } long long extGCD(long long a, long long b, long long &x, long long &y) { if (b == 0) { x = 1; y = 0; return a; } long long d = extGCD(b, a % b, y, x); y -= a / b * x; return d; } struct UnionFind { vector<ll> data; UnionFind(int sz) { data.assign(sz, -1); } bool unite(int x, int y) { x = find(x), y = find(y); if (x == y) return (false); if (data[x] > data[y]) swap(x, y); data[x] += data[y]; data[y] = x; return (true); } int find(int k) { if (data[k] < 0) return (k); return (data[k] = find(data[k])); } ll size(int k) { return (-data[find(k)]); } }; ll M = 1000000007; vector<ll> fac(2000011); //n!(mod M) vector<ll> ifac(2000011); //k!^{M-2} (mod M) ll mpow(ll x, ll n) { ll ans = 1; while (n != 0) { if (n & 1) ans = ans * x % M; x = x * x % M; n = n >> 1; } return ans; } ll mpow2(ll x, ll n, ll mod) { ll ans = 1; while (n != 0) { if (n & 1) ans = ans * x % mod; x = x * x % mod; n = n >> 1; } return ans; } void setcomb() { fac[0] = 1; ifac[0] = 1; for (ll i = 0; i < 2000010; i++) { fac[i + 1] = fac[i] * (i + 1) % M; // n!(mod M) } ifac[2000010] = mpow(fac[2000010], M - 2); for (ll i = 2000010; i > 0; i--) { ifac[i - 1] = ifac[i] * i % M; } } ll comb(ll a, ll b) { if (a == 0 && b == 0) return 1; if (a < b || a < 0) return 0; ll tmp = ifac[a - b] * ifac[b] % M; return tmp * fac[a] % M; } ll perm(ll a, ll b) { if (a == 0 && b == 0) return 1; if (a < b || a < 0) return 0; return fac[a] * ifac[a - b] % M; } long long modinv(long long a) { long long b = M, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } u %= M; if (u < 0) u += M; return u; } ll modinv2(ll a, ll mod) { ll b = mod, u = 1, v = 0; while (b) { ll t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v); } u %= mod; if (u < 0) u += mod; return u; } template <int mod> struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt<mod>(t); return (is); } static int get_mod() { return mod; } }; using mint = ModInt<mod>; vector<vector<ll>> mul(vector<vector<ll>> a, vector<vector<ll>> b, int n) { int i, j, k, t; vector<vector<ll>> c(n); for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { t = 0; for (k = 0; k < n; k++) t = (t + a[i][k] * b[k][j] % M) % M; c[i].push_back(t); } } return c; } vector<vector<ll>> mat_pow(vector<vector<ll>> x, ll n) { ll k = x.size(); vector<vector<ll>> ans(k, vector<ll>(k, 0)); for (int i = 0; i < k; i++) ans[i][i] = 1; while (n != 0) { if (n & 1) ans = mul(ans, x, k); x = mul(x, x, k); n = n >> 1; } return ans; } template <typename Monoid> struct SegmentTree { using F = function<Monoid(Monoid, Monoid)>; int sz; vector<Monoid> seg; const F f; const Monoid M1; SegmentTree(int n, const F f, const Monoid &M1) : f(f), M1(M1) { sz = 1; while (sz < n) sz <<= 1; seg.assign(2 * sz, M1); } void set(int k, const Monoid &x) { seg[k + sz] = x; } void build() { for (int k = sz - 1; k > 0; k--) { seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]); } } void update(int k, const Monoid &x) { k += sz; seg[k] = x; while (k >>= 1) { seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]); } } Monoid query(int a, int b) { Monoid L = M1, R = M1; for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if (a & 1) L = f(L, seg[a++]); if (b & 1) R = f(seg[--b], R); } return f(L, R); } Monoid operator[](const int &k) const { return seg[k + sz]; } template <typename C> int find_subtree(int a, const C &check, Monoid &M, bool type) { while (a < sz) { Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]); if (check(nxt)) a = 2 * a + type; else M = nxt, a = 2 * a + 1 - type; } return a - sz; } template <typename C> int find_first(int a, const C &check) { Monoid L = M1; if (a <= 0) { if (check(f(L, seg[1]))) return find_subtree(1, check, L, false); return -1; } int b = sz; for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if (a & 1) { Monoid nxt = f(L, seg[a]); if (check(nxt)) return find_subtree(a, check, L, false); L = nxt; ++a; } } return -1; } template <typename C> int find_last(int b, const C &check) { Monoid R = M1; if (b >= sz) { if (check(f(seg[1], R))) return find_subtree(1, check, R, true); return -1; } int a = sz; for (b += sz; a < b; a >>= 1, b >>= 1) { if (b & 1) { Monoid nxt = f(seg[--b], R); if (check(nxt)) return find_subtree(b, check, R, true); R = nxt; } } return -1; } }; template <unsigned mod> struct RollingHash { vector<unsigned> hashed, power; inline unsigned mul(unsigned a, unsigned b) const { unsigned long long x = (unsigned long long)a * b; unsigned xh = (unsigned)(x >> 32), xl = (unsigned)x, d, m; asm("divl %4; \n\t" : "=a"(d), "=d"(m) : "d"(xh), "a"(xl), "r"(mod)); return m; } RollingHash(const string &s, unsigned base = 10007) { int sz = (int)s.size(); hashed.assign(sz + 1, 0); power.assign(sz + 1, 0); power[0] = 1; for (int i = 0; i < sz; i++) { power[i + 1] = mul(power[i], base); hashed[i + 1] = mul(hashed[i], base) + s[i]; if (hashed[i + 1] >= mod) hashed[i + 1] -= mod; } } unsigned get(int l, int r) const { unsigned ret = hashed[r] + mod - mul(hashed[l], power[r - l]); if (ret >= mod) ret -= mod; return ret; } unsigned connect(unsigned h1, int h2, int h2len) const { unsigned ret = mul(h1, power[h2len]) + h2; if (ret >= mod) ret -= mod; return ret; } int LCP(const RollingHash<mod> &b, int l1, int r1, int l2, int r2) { int len = min(r1 - l1, r2 - l2); int low = -1, high = len + 1; while (high - low > 1) { int mid = (low + high) / 2; if (get(l1, l1 + mid) == b.get(l2, l2 + mid)) low = mid; else high = mid; } return (low); } }; using RH = RollingHash<1000000007>; template <typename T> struct edge { int src, to; T cost; edge(int to, T cost) : src(-1), to(to), cost(cost) {} edge(int src, int to, T cost) : src(src), to(to), cost(cost) {} edge &operator=(const int &x) { to = x; return *this; } operator int() const { return to; } }; template <typename T> using Edges = vector<edge<T>>; template <typename T> using WeightedGraph = vector<Edges<T>>; using UnWeightedGraph = vector<vector<int>>; template <typename T> using Matrix = vector<vector<T>>; template <typename G> struct DoublingLowestCommonAncestor { const int LOG; vector<int> dep; const G &g; vector<vector<int>> table; DoublingLowestCommonAncestor(const G &g) : g(g), dep(g.size()), LOG(32 - __builtin_clz(g.size())) { table.assign(LOG, vector<int>(g.size(), -1)); } void dfs(int idx, int par, int d) { table[0][idx] = par; dep[idx] = d; for (auto &to : g[idx]) { if (to != par) dfs(to, idx, d + 1); } } void build() { dfs(0, -1, 0); for (int k = 0; k + 1 < LOG; k++) { for (int i = 0; i < table[k].size(); i++) { if (table[k][i] == -1) table[k + 1][i] = -1; else table[k + 1][i] = table[k][table[k][i]]; } } } int query(int u, int v) { if (dep[u] > dep[v]) swap(u, v); for (int i = LOG - 1; i >= 0; i--) { if (((dep[v] - dep[u]) >> i) & 1) v = table[i][v]; } if (u == v) return u; for (int i = LOG - 1; i >= 0; i--) { if (table[i][u] != table[i][v]) { u = table[i][u]; v = table[i][v]; } } return table[0][u]; } }; int main() { ll n, p; cin >> n; rep(i,n){ cin >> p; cout << (p - 1) * (p - 1) << endl; } }