結果

問題 No.515 典型LCP
ユーザー Gosu_HirooGosu_Hiroo
提出日時 2020-09-22 22:19:36
言語 C++17
(gcc 13.2.0 + boost 1.83.0)
結果
AC  
実行時間 720 ms / 1,000 ms
コード長 19,993 bytes
コンパイル時間 3,576 ms
コンパイル使用メモリ 236,540 KB
実行使用メモリ 60,672 KB
最終ジャッジ日時 2023-09-09 04:53:58
合計ジャッジ時間 10,069 ms
ジャッジサーバーID
(参考情報)
judge14 / judge11
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 715 ms
60,672 KB
testcase_01 AC 720 ms
60,660 KB
testcase_02 AC 391 ms
51,808 KB
testcase_03 AC 1 ms
4,376 KB
testcase_04 AC 2 ms
4,380 KB
testcase_05 AC 157 ms
51,544 KB
testcase_06 AC 218 ms
51,628 KB
testcase_07 AC 160 ms
51,676 KB
testcase_08 AC 294 ms
51,556 KB
testcase_09 AC 317 ms
51,768 KB
testcase_10 AC 345 ms
51,864 KB
testcase_11 AC 345 ms
51,856 KB
testcase_12 AC 344 ms
51,636 KB
testcase_13 AC 237 ms
51,564 KB
testcase_14 AC 9 ms
5,396 KB
testcase_15 AC 143 ms
51,852 KB
testcase_16 AC 143 ms
51,760 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

/**
 * code generated by JHelper
 * More info: https://github.com/AlexeyDmitriev/JHelper
 * @author Gosu_Hiroo
 */

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using VI = vector<int>;
using VL = vector<long long>;
using PII = pair<int, int>;
using PLL = pair<long long, long long>;

//#pragma GCC optimize("O3")
//#pragma GCC target("avx2")
//#pragma GCC optimize("unroll-loops")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("Ofast")

#define G(size_1) vector<vector<int>>(size_1, vector<int>())
#define SZ(x) ((int)(x).size())
#define READ ({ll t;cin >> t;t;})

#define FOR(i, _begin, _end) for (__typeof(_end) end = _end, begin = _begin,  i = (begin) - ((begin) > (end)); i != (end) - ((begin) > (end)); i += 1 - 2 * ((begin) > (end)))
#define REP(i, end) for (__typeof(end) i = 0, _len = (end); i < (_len); i += 1)
#define ALL(x) (x).begin(),(x).end()
#define RALL(x) (x).rbegin(),(x).rend()
#define F first
#define S second
#define y0 y3487465
#define y1 y8687969
#define j0 j1347829
#define j1 j234892
#define BIT(n) (1LL<<(n))
#define UNIQUE(v) v.erase( unique(v.begin(), v.end()), v.end() );
#define EB emplace_back
#define PB push_back
#define fcout cout << fixed << setprecision(12)
#define fcerr cerr << fixed << setprecision(12)
#define print(x) cout << (x) << '\n'
#define printE(x) cout << (x) << '\n';
#define fprint(x) cout << fixed << setprecision(12) << (x) << '\n';
# define BYE(a) do { cout << (a) << endl; return ; } while (false)

#ifdef DEBUG
#define DBG(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator<string> _it(_ss); _err(cerr,_it, args); }
#define ERR(args...) { string _s = #args; replace(_s.begin(), _s.end(), ',', ' '); stringstream _ss(_s); istream_iterator<string> _it(_ss); _err(std::cerr,_it, args); }
#else
#define DBG(args...) {};
#define ERR(args...) {};
#endif
void _err(std::ostream& cerr,istream_iterator<string> it) {cerr << endl;}
template<typename T, typename... Args>
void _err(std::ostream& cerr, istream_iterator<string> it, T a, Args... args) {
    cerr << *it << " = " << a << "  ";
    _err(cerr,++it, args...);
}

const double PI = 2 * acos(.0);
const int INF = 0x3f3f3f3f;

template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
template<class T>T ceil(T a, T b) {return (a+b-1)/b;}

template <typename T, typename U>
istream& operator >> (istream& is, pair<T, U>& V) {
    is >> V.F >> V.S;
    return is;
}

template <typename T>
istream& operator >> (istream& is, vector<T>& V) {
    for(auto&& ele : V)is >> ele;
    return is;
}

template <typename T>
ostream& operator << (ostream& os, const vector<T> V) {
    os << "[";
    int cnt = 0;
    T curr;
    if(!V.empty()){
        for (int i = 0; i < V.size() - 1; ++i) {
            if(V[i] == curr)cnt ++;
            else cnt = 0;
            if(cnt == 4)os << "... ";
            if(cnt < 4)
                os << i << ":" << V[i] << " ";
            curr = V[i];
        }
        os << V.size() - 1 << ":" << V.back();
    }
    os << "]\n";
    return os;
}

template <typename T, typename U>
ostream& operator << (ostream& os, const pair<T,U> P) {
    os << "(";
    os << P.first << "," << P.second;
    os << ")";
    return os;
}

template <typename T, typename U>
ostream& operator << (ostream& os, const set<T,U> V) {
    os << "{";
    if(!V.empty()){
        auto it = V.begin();
        for (int i = 0; i < V.size() -1; ++i) {
            os << *it << " ";
            it++;
        }
        os << *it;
    }
    os << "}\n";
    return os;
}

template <typename K, typename H, typename P>
ostream& operator << (ostream& os, const unordered_set<K, H, P> V) {
    os << "{";
    if(!V.empty()){
        auto it = V.begin();
        for (int i = 0; i < V.size() -1; ++i) {
            os << *it << " ";
            it++;
        }
        os << *it;
    }
    os << "}\n";
    return os;
}

template <typename K, typename C>
ostream& operator << (ostream& os, const multiset<K, C> V) {
    os << "{";
    if(!V.empty()){
        auto it = V.begin();
        for (int i = 0; i < V.size() -1; ++i) {
            os << *it << " ";
            it++;
        }
        os << *it;
    }
    os << "}";
    return os;
}

template <typename K, typename T, typename C>
ostream& operator << (ostream& os, const map<K,T,C> V) {
    os << "{";
    if(!V.empty()){
        auto it = V.begin();
        for (int i = 0; i < V.size() -1; ++i) {
            os << "(";
            os << it->first << "," << it->second;
            os << ") ";
            it++;
        }
        os << "(";
        os << it->first << "," << it->second;
        os << ")";
    }
    os << "}\n";
    return os;
}

template <typename K, typename T, typename C>
ostream& operator << (ostream& os, const unordered_map<K,T,C> V) {
    os << "{";
    if(!V.empty()){
        auto it = V.begin();
        for (int i = 0; i < V.size() -1; ++i) {
            os << "(";
            os << it->first << "," << it->second;
            os << ") ";
            it++;
        }
        os << "(";
        os << it->first << "," << it->second;
        os << ")";
    }
    os << "}\n";
    return os;
}

template <typename T>
ostream& operator << (ostream& os, const deque<T> V) {
    os << "[";
    if (!V.empty()) {
        for (int i = 0; i < V.size() - 1; ++i) {
            os << V[i] << "->";
        }
        if (!V.empty())os << V.back();
    }
    os << "]\n";
    return os;
};

template <typename T, typename Cont, typename Comp>
ostream& operator << (ostream& os, const priority_queue<T, Cont, Comp> V) {
    priority_queue<T, Cont, Comp> _V = V;
    os << "[";
    if(!_V.empty()){
        while(_V.size() > 1){
            os << _V.top() << "->";
            _V.pop();
        }
        os << _V.top();
    }
    os << "]\n";
    return os;
};

template <class F>
struct y_combinator {
    F f; // the lambda will be stored here

    // a forwarding operator():
    template <class... Args>
    decltype(auto) operator()(Args&&... args) const {
        // we pass ourselves to f, then the arguments.
        // the lambda should take the first argument as `auto&& recurse` or similar.
        return f(*this, std::forward<Args>(args)...);
    }
};
// helper function that deduces the type of the lambda:
template <class F>
y_combinator<std::decay_t<F>> recursive(F&& f){
return {std::forward<F>(f)};
}

struct hash_pair {
    template <class T1, class T2>
    size_t operator()(const pair<T1, T2>& p) const
    {
        auto hash1 = hash<T1>{}(p.first);
        auto hash2 = hash<T2>{}(p.second);
        return hash1 ^ hash2;
    }

};

template <typename T, typename U>
std::vector<T> multi_vector(int n, U v) {
    return std::vector<T>(n, v);
}

template <typename U, typename... Args>
auto multi_vector(int n, Args... args) {
    auto val = multi_vector<U>(std::forward<Args>(args)...);
    return std::vector<decltype(val)>(n, std::move(val));
}


#ifndef ATCODER_SEGTREE_HPP
#define ATCODER_SEGTREE_HPP 1

#include <algorithm>
#ifndef ATCODER_INTERNAL_BITOP_HPP
#define ATCODER_INTERNAL_BITOP_HPP 1

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param n `0 <= n`
// @return minimum non-negative `x` s.t. `n <= 2**x`
int ceil_pow2(int n) {
    int x = 0;
    while ((1U << x) < (unsigned int)(n)) x++;
    return x;
}

// @param n `1 <= n`
// @return minimum non-negative `x` s.t. `(n & (1 << x)) != 0`
int bsf(unsigned int n) {
#ifdef _MSC_VER
    unsigned long index;
    _BitScanForward(&index, n);
    return index;
#else
    return __builtin_ctz(n);
#endif
}

}  // namespace internal

}  // namespace atcoder

#endif  // ATCODER_INTERNAL_BITOP_HPP

#include <cassert>
#include <vector>

namespace atcoder {

template <class S, S (*op)(S, S), S (*e)()> struct segtree {
  public:
    std::vector<S> d;
    segtree() : segtree(0) {}
    segtree(int n) : segtree(std::vector<S>(n, e())) {}
    segtree(const std::vector<S>& v) : _n(int(v.size())) {
        log = internal::ceil_pow2(_n);
        size = 1 << log;
        d = std::vector<S>(2 * size, e());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, S x) {
        assert(0 <= p && p < _n);
        p += size;
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S get(int p) {
        assert(0 <= p && p < _n);
        return d[p + size];
    }

    S prod(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        S sml = e(), smr = e();
        l += size;
        r += size;

        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() { return d[1]; }

    template <bool (*f)(S)> int max_right(int l) {
        return max_right(l, [](S x) { return f(x); });
    }
    template <class F> int max_right(int l, F f) {
        assert(0 <= l && l <= _n);
        assert(f(e()));
        if (l == _n) return _n;
        l += size;
        S sm = e();
        do {
            while (l % 2 == 0) l >>= 1;
            if (!f(op(sm, d[l]))) {
                while (l < size) {
                    l = (2 * l);
                    if (f(op(sm, d[l]))) {
                        sm = op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return _n;
    }

    template <bool (*f)(S)> int min_left(int r) {
        return min_left(r, [](S x) { return f(x); });
    }
    template <class F> int min_left(int r, F f) {
        assert(0 <= r && r <= _n);
        assert(f(e()));
        if (r == 0) return 0;
        r += size;
        S sm = e();
        do {
            r--;
            while (r > 1 && (r % 2)) r >>= 1;
            if (!f(op(d[r], sm))) {
                while (r < size) {
                    r = (2 * r + 1);
                    if (f(op(d[r], sm))) {
                        sm = op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

    S operator[](int p){
        assert(0 <= p && p < _n);
        return d[p + size];
    }
  private:
    int _n, size, log;
//    std::vector<S> d;
    void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
};

}  // namespace atcoder

#endif  // ATCODER_SEGTREE_HPP

#ifndef ATCODER_STRING_HPP
#define ATCODER_STRING_HPP 1



#include <numeric>
#include <string>


namespace atcoder {

namespace internal {

std::vector<int> sa_naive(const std::vector<int>& s) {
    int n = int(s.size());
    std::vector<int> sa(n);
    std::iota(sa.begin(), sa.end(), 0);
    std::sort(sa.begin(), sa.end(), [&](int l, int r) {
        if (l == r) return false;
        while (l < n && r < n) {
            if (s[l] != s[r]) return s[l] < s[r];
            l++;
            r++;
        }
        return l == n;
    });
    return sa;
}

std::vector<int> sa_doubling(const std::vector<int>& s) {
    int n = int(s.size());
    std::vector<int> sa(n), rnk = s, tmp(n);
    std::iota(sa.begin(), sa.end(), 0);
    for (int k = 1; k < n; k *= 2) {
        auto cmp = [&](int x, int y) {
            if (rnk[x] != rnk[y]) return rnk[x] < rnk[y];
            int rx = x + k < n ? rnk[x + k] : -1;
            int ry = y + k < n ? rnk[y + k] : -1;
            return rx < ry;
        };
        std::sort(sa.begin(), sa.end(), cmp);
        tmp[sa[0]] = 0;
        for (int i = 1; i < n; i++) {
            tmp[sa[i]] = tmp[sa[i - 1]] + (cmp(sa[i - 1], sa[i]) ? 1 : 0);
        }
        std::swap(tmp, rnk);
    }
    return sa;
}

// SA-IS, linear-time suffix array construction
// Reference:
// G. Nong, S. Zhang, and W. H. Chan,
// Two Efficient Algorithms for Linear Time Suffix Array Construction
template <int THRESHOLD_NAIVE = 10, int THRESHOLD_DOUBLING = 40>
std::vector<int> sa_is(const std::vector<int>& s, int upper) {
    int n = int(s.size());
    if (n == 0) return {};
    if (n == 1) return {0};
    if (n == 2) {
        if (s[0] < s[1]) {
            return {0, 1};
        } else {
            return {1, 0};
        }
    }
    if (n < THRESHOLD_NAIVE) {
        return sa_naive(s);
    }
    if (n < THRESHOLD_DOUBLING) {
        return sa_doubling(s);
    }

    std::vector<int> sa(n);
    std::vector<bool> ls(n);
    for (int i = n - 2; i >= 0; i--) {
        ls[i] = (s[i] == s[i + 1]) ? ls[i + 1] : (s[i] < s[i + 1]);
    }
    std::vector<int> sum_l(upper + 1), sum_s(upper + 1);
    for (int i = 0; i < n; i++) {
        if (!ls[i]) {
            sum_s[s[i]]++;
        } else {
            sum_l[s[i] + 1]++;
        }
    }
    for (int i = 0; i <= upper; i++) {
        sum_s[i] += sum_l[i];
        if (i < upper) sum_l[i + 1] += sum_s[i];
    }

    auto induce = [&](const std::vector<int>& lms) {
        std::fill(sa.begin(), sa.end(), -1);
        std::vector<int> buf(upper + 1);
        std::copy(sum_s.begin(), sum_s.end(), buf.begin());
        for (auto d : lms) {
            if (d == n) continue;
            sa[buf[s[d]]++] = d;
        }
        std::copy(sum_l.begin(), sum_l.end(), buf.begin());
        sa[buf[s[n - 1]]++] = n - 1;
        for (int i = 0; i < n; i++) {
            int v = sa[i];
            if (v >= 1 && !ls[v - 1]) {
                sa[buf[s[v - 1]]++] = v - 1;
            }
        }
        std::copy(sum_l.begin(), sum_l.end(), buf.begin());
        for (int i = n - 1; i >= 0; i--) {
            int v = sa[i];
            if (v >= 1 && ls[v - 1]) {
                sa[--buf[s[v - 1] + 1]] = v - 1;
            }
        }
    };

    std::vector<int> lms_map(n + 1, -1);
    int m = 0;
    for (int i = 1; i < n; i++) {
        if (!ls[i - 1] && ls[i]) {
            lms_map[i] = m++;
        }
    }
    std::vector<int> lms;
    lms.reserve(m);
    for (int i = 1; i < n; i++) {
        if (!ls[i - 1] && ls[i]) {
            lms.push_back(i);
        }
    }

    induce(lms);

    if (m) {
        std::vector<int> sorted_lms;
        sorted_lms.reserve(m);
        for (int v : sa) {
            if (lms_map[v] != -1) sorted_lms.push_back(v);
        }
        std::vector<int> rec_s(m);
        int rec_upper = 0;
        rec_s[lms_map[sorted_lms[0]]] = 0;
        for (int i = 1; i < m; i++) {
            int l = sorted_lms[i - 1], r = sorted_lms[i];
            int end_l = (lms_map[l] + 1 < m) ? lms[lms_map[l] + 1] : n;
            int end_r = (lms_map[r] + 1 < m) ? lms[lms_map[r] + 1] : n;
            bool same = true;
            if (end_l - l != end_r - r) {
                same = false;
            } else {
                while (l < end_l) {
                    if (s[l] != s[r]) {
                        break;
                    }
                    l++;
                    r++;
                }
                if (l == n || s[l] != s[r]) same = false;
            }
            if (!same) rec_upper++;
            rec_s[lms_map[sorted_lms[i]]] = rec_upper;
        }

        auto rec_sa =
            sa_is<THRESHOLD_NAIVE, THRESHOLD_DOUBLING>(rec_s, rec_upper);

        for (int i = 0; i < m; i++) {
            sorted_lms[i] = lms[rec_sa[i]];
        }
        induce(sorted_lms);
    }
    return sa;
}

}  // namespace internal

std::vector<int> suffix_array(const std::vector<int>& s, int upper) {
    assert(0 <= upper);
    for (int d : s) {
        assert(0 <= d && d <= upper);
    }
    auto sa = internal::sa_is(s, upper);
    return sa;
}

template <class T> std::vector<int> suffix_array(const std::vector<T>& s) {
    int n = int(s.size());
    std::vector<int> idx(n);
    iota(idx.begin(), idx.end(), 0);
    sort(idx.begin(), idx.end(), [&](int l, int r) { return s[l] < s[r]; });
    std::vector<int> s2(n);
    int now = 0;
    for (int i = 0; i < n; i++) {
        if (i && s[idx[i - 1]] != s[idx[i]]) now++;
        s2[idx[i]] = now;
    }
    return internal::sa_is(s2, now);
}

std::vector<int> suffix_array(const std::string& s) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return internal::sa_is(s2, 255);
}

// Reference:
// T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park,
// Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
// Applications
template <class T>
std::vector<int> lcp_array(const std::vector<T>& s,
                           const std::vector<int>& sa) {
    int n = int(s.size());
    assert(n >= 1);
    std::vector<int> rnk(n);
    for (int i = 0; i < n; i++) {
        rnk[sa[i]] = i;
    }
    std::vector<int> lcp(n - 1);
    int h = 0;
    for (int i = 0; i < n; i++) {
        if (h > 0) h--;
        if (rnk[i] == 0) continue;
        int j = sa[rnk[i] - 1];
        for (; j + h < n && i + h < n; h++) {
            if (s[j + h] != s[i + h]) break;
        }
        lcp[rnk[i] - 1] = h;
    }
    return lcp;
}

std::vector<int> lcp_array(const std::string& s, const std::vector<int>& sa) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return lcp_array(s2, sa);
}

// Reference:
// D. Gusfield,
// Algorithms on Strings, Trees, and Sequences: Computer Science and
// Computational Biology
template <class T> std::vector<int> z_algorithm(const std::vector<T>& s) {
    int n = int(s.size());
    if (n == 0) return {};
    std::vector<int> z(n);
    z[0] = 0;
    for (int i = 1, j = 0; i < n; i++) {
        int& k = z[i];
        k = (j + z[j] <= i) ? 0 : std::min(j + z[j] - i, z[i - j]);
        while (i + k < n && s[k] == s[i + k]) k++;
        if (j + z[j] < i + z[i]) j = i;
    }
    z[0] = n;
    return z;
}

std::vector<int> z_algorithm(const std::string& s) {
    int n = int(s.size());
    std::vector<int> s2(n);
    for (int i = 0; i < n; i++) {
        s2[i] = s[i];
    }
    return z_algorithm(s2);
}

}  // namespace atcoder

#endif  // ATCODER_STRING_HPP

using namespace atcoder;

namespace arg{
    using S = ll;
    S op(S s1, S s2){
        return min(s1, s2);
    }

    S unit(){
        return INF;
    }
}

using st = segtree<arg::S,arg::op,arg::unit>;
class __test {
public:

void solve(std::istream& cin, std::ostream& cout, std::ostream& cerr) {
    ll N;cin >> N;
    vector<pair<string, ll>> strs(N);
    REP(i,N){string s;cin >> s;strs[i] = {s, i};}
    ll M,x,d;cin >> M >> x >> d;
    VL I(M), J(M);
    REP(k,M){
        I[k] = x/(N-1);
        J[k] = x%(N-1);
        if(I[k]>J[k])swap(I[k],J[k]);
        else J[k]++;
        x = (x+d)%(N*(N-1));
    }

    sort(ALL(strs));
    VL pos(N);
    vector<string> sorted_strs(N);
    REP(i,N){
        auto [str, ind] = strs[i];
        sorted_strs[i] = str;
        pos[ind] = i;
    }
    DBG(sorted_strs)
    auto lcp = [&](ll i){
        int res = 0;
        auto str1 = sorted_strs[i], str2 = sorted_strs[i+1];
//        DBG(str1, str2)
        REP(j,(int)min(SZ(str1), SZ(str2))){
//            DBG(j)
           if(str1[j] == str2[j])res++;
           else break;
        }
        return res;
    };
    st mi_st(N-1);
    REP(i,N-1){
        mi_st.set(i, lcp(i));
        DBG(lcp(i))
    }
    DBG(mi_st.d)
    ll ans = 0;
    REP(i,M){
        ans += mi_st.prod(min(pos[I[i]],pos[J[i]]),max(pos[I[i]], pos[J[i]]));
//        DBG(I[i], J[i], mi_st.prod(I[i], J[i]));
    }
    print(ans);



}


};


#undef int
int main() {

	__test solver;
	std::istream& in(std::cin);
	std::ostream& out(std::cout);
    std::ostringstream err;
	in.tie(0); ios::sync_with_stdio(0);
    solver.solve(in, out,err);
	return 0;
}
0