結果
| 問題 |
No.269 見栄っ張りの募金活動
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-09-30 22:33:33 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 10,799 bytes |
| コンパイル時間 | 2,668 ms |
| コンパイル使用メモリ | 218,748 KB |
| 最終ジャッジ日時 | 2025-01-14 23:40:37 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 21 TLE * 1 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = int64_t;
using ld = long double;
using P = pair<ll, ll>;
using Pld = pair<ld, ld>;
using Vec = vector<ll>;
using VecP = vector<P>;
using VecB = vector<bool>;
using VecC = vector<char>;
using VecD = vector<ld>;
using VecS = vector<string>;
template <class T>
using Vec2 = vector<vector<T>>;
#define REP(i, m, n) for(ll i = (m); i < (n); ++i)
#define REPN(i, m, n) for(ll i = (m); i <= (n); ++i)
#define REPR(i, m, n) for(ll i = (m)-1; i >= (n); --i)
#define REPNR(i, m, n) for(ll i = (m); i >= (n); --i)
#define rep(i, n) REP(i, 0, n)
#define repn(i, n) REPN(i, 1, n)
#define repr(i, n) REPR(i, n, 0)
#define repnr(i, n) REPNR(i, n, 1)
#define all(s) (s).begin(), (s).end()
#define pb push_back
#define fs first
#define sc second
template <class T1, class T2>
bool chmax(T1 &a, const T2 b){if(a < b){a = b; return true;} return false;}
template <class T1, class T2>
bool chmin(T1 &a, const T2 b){if(a > b){a = b; return true;} return false;}
ll pow2(const int n){return (1LL << n);}
template <class T>
ostream &operator<<(ostream &os, const vector<T> &v) {
for (const T &i : v) os << i << ' ';
return os;
}
void co() { cout << '\n'; }
template <class Head, class... Tail>
void co(Head&& head, Tail&&... tail) {
cout << head << ' ';
co(forward<Tail>(tail)...);
}
void ce() { cerr << '\n'; }
template <class Head, class... Tail>
void ce(Head&& head, Tail&&... tail) {
cerr << head << ' ';
ce(forward<Tail>(tail)...);
}
void sonic(){ios::sync_with_stdio(false); cin.tie(0);}
void setp(const int n){cout << fixed << setprecision(n);}
constexpr int INF = 1000000001;
constexpr ll LINF = 1000000000000000001;
constexpr ll MOD = 1000000007;
constexpr ll MOD_N = 998244353;
constexpr ld EPS = 1e-11;
const double PI = acos(-1);
template <int mod>
struct ModInt {
int64_t x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &rhs) {
if((x += rhs.x) >= mod) x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &rhs) {
if((x += mod - rhs.x) >= mod) x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &rhs) {
x = (int) (1LL * x * rhs.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &rhs) {
*this *= rhs.inverse();
return *this;
}
ModInt &operator++() {
if((++x) >= mod) x -= mod;
return *this;
}
ModInt operator++(int) {
ModInt tmp(*this);
operator++();
return tmp;
}
ModInt &operator--() {
if((x += mod - 1) >= mod) x -= mod;
return *this;
}
ModInt operator--(int) {
ModInt tmp(*this);
operator--();
return tmp;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &rhs) const { return ModInt(*this) += rhs; }
ModInt operator-(const ModInt &rhs) const { return ModInt(*this) -= rhs; }
ModInt operator*(const ModInt &rhs) const { return ModInt(*this) *= rhs; }
ModInt operator/(const ModInt &rhs) const { return ModInt(*this) /= rhs; }
bool operator==(const ModInt &rhs) const { return x == rhs.x; }
bool operator!=(const ModInt &rhs) const { return x != rhs.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt res(1), mul(x);
while (n > 0) {
if(n & 1) res *= mul;
mul *= mul;
n >>= 1;
}
return res;
}
friend ostream &operator<<(ostream &os, const ModInt &rhs) {
return os << rhs.x;
}
friend istream &operator>>(istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt< mod >(t);
return (is);
}
int to_int() const { return x; }
static int get_mod() { return mod; }
};
using Mint = ModInt<MOD>;
template<int mod, int primitive_root>
struct NTT {
using mint = ModInt<mod>;
int get_mod() const { return mod; }
void _ntt(vector<int64_t> &a, bool inv) {
int64_t N = a.size();
int64_t pr = primitive_root;
static bool is_first = true;
static vector<mint> vbw(30), vibw(30);
if (is_first) {
is_first = false;
for (size_t i = 0; i < 30; ++i) {
vbw[i] = mint(pr).pow((mod - 1) >> (i + 1));
vibw[i] = vbw[i].inverse();
}
}
for (size_t i = 0, j = 1; j < N - 1; ++j) {
for (size_t k = N >> 1; k > (i ^= k); k >>= 1);
if (i > j) swap(a[i], a[j]);
}
for (size_t k = 0, t = 1; t < N; ++k, t <<= 1) {
mint bw = vbw[k];
if (inv) bw = vibw[k];
for (size_t i = 0; i < N; i += t * 2) {
mint w = 1;
for (size_t j = 0; j < t; ++j) {
int64_t l = i + j, r = i + j + t;
mint c = a[l], d = w * a[r];
a[l] = (c + d).to_int();
a[r] = (c - d).to_int();
w *= bw;
}
}
}
if (inv) {
mint m = mint(N).inverse();
for (size_t i = 0; i < N; ++i) a[i] = (m * a[i]).to_int();
}
}
vector<int64_t> convolution(vector<int64_t> a, vector<int64_t> b){
int64_t n = a.size() + b.size() - 1;
int64_t N = 1;
while (N < n) N <<= 1;
a.resize(N); b.resize(N);
_ntt(a, false);
_ntt(b, false);
vector<ll> res(N);
for (int64_t i = 0; i < N; ++i) {
res[i] = a[i] * b[i] % mod;
}
_ntt(res, true);
res.resize(n);
return res;
}
void convolution_self(vector<int64_t> &a, vector<int64_t> b){
int64_t n = a.size() + b.size() - 1;
int64_t N = 1;
while (N < n) N <<= 1;
a.resize(N); b.resize(N);
_ntt(a, false);
_ntt(b, false);
vector<ll> res(N);
for (int64_t i = 0; i < N; ++i) {
(a[i] *= b[i]) % mod;
}
_ntt(a, true);
a.resize(n);
}
};
using NTT_1 = NTT<167772161, 3>; // 2^25 * 5 + 1
using NTT_2 = NTT<469762049, 3>; // 2^26 * 7 + 1
using NTT_3 = NTT<1224736769, 3>; // 2^24 * 73 + 1
template <class T>
struct formal_power_series {
vector<T> data;
formal_power_series(vector<T> _v) : data(_v) {}
const Mint& operator[](const int64_t x) const {
return data[x];
}
size_t size() const {
return data.size();
}
void resize(size_t _sz) {
data.resize(_sz);
}
void pow(int64_t x) {
NTT<MOD_N, 3> ntt;
int64_t n = size();
vector<int64_t> ans(n);
ans[0] = 1;
while (x) {
if (x & 1) {
ntt.convolution_self(ans, data);
ans.resize(n);
}
x >>= 1;
ntt.convolution_self(data, data);
resize(n);
}
swap(data, ans);
}
void conv_naive(const formal_power_series &a) {
int64_t n = size() + a.size() - 1;
vector<T> ans(n);
for (size_t i = 0; i < a.size(); ++i) {
if (a[i] == 0) continue;
for (size_t j = 0; j < size(); ++j) {
ans[i + j] += data[j] * a[i];
}
}
swap(data, ans);
}
void cumsum() {
for (size_t i = 0; i < size() - 1; ++i) {
data[i + 1] += data[i];
}
}
void cumsum_inv() {
for (size_t i = size() - 1; i > 0; --i) {
data[i] -= data[i - 1];
}
}
};
int64_t inv_mod(int64_t a, int64_t mod) {
int64_t b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
swap(a -= t * b, b);
swap(u -= t * v, v);
}
return u >= 0 ? u % mod : (mod - (-u) % mod) % mod;
}
int64_t pow_mod(int64_t a, int64_t n, int64_t mod){
if (n < 0) return inv_mod(pow_mod(a, -n, mod), mod);
int64_t res = 1, mul = a;
while (n > 0) {
if (n & 1) (res *= mul) %= mod;
(mul *= mul) %= mod;
n >>= 1;
}
return res;
}
ll garner(vector<ll> r, vector<ll> m, int mod) {
int64_t n = r.size();
r.emplace_back(0);
m.emplace_back(mod);
vector<ll> coffs(n + 1, 1);
vector<ll> constants(n + 1, 0);
for (size_t i = 0; i < n; ++i) {
int64_t v = (r[i] - constants[i]) * inv_mod(coffs[i], m[i]) % m[i];
if (v < 0) v += m[i];
for (size_t j = i + 1; j < n + 1; ++j) {
(constants[j] += coffs[j] * v) %= m[j];
(coffs[j] *= m[i]) %= m[j];
}
}
return constants[n];
}
vector<int64_t> convolution(vector<int64_t> a, vector<int64_t> b, int mod) {
const int64_t n = a.size() + b.size() - 1;
for (auto& i : a) i %= mod;
for (auto& i : b) i %= mod;
NTT_1 ntt1; NTT_2 ntt2; NTT_3 ntt3;
auto x = ntt1.convolution(a, b);
auto y = ntt2.convolution(a, b);
auto z = ntt3.convolution(a, b);
vector<int64_t> res(n);
vector<int64_t> r(3), m(3);
for (int64_t i = 0; i < n; ++i) {
r[0] = x[i], m[0] = ntt1.get_mod();
r[1] = y[i], m[1] = ntt2.get_mod();
r[2] = z[i], m[2] = ntt3.get_mod();
res[i] = garner(r, m, mod);
}
return res;
}
vector<int64_t> power(vector<int64_t> v, int64_t x) {
int64_t n = v.size();
vector<int64_t> res(n);
res[0] = 1;
while (x > 0) {
if (x & 1) {
res = convolution(res, v, MOD);
res.resize(n);
}
x >>= 1;
v = convolution(v, v, MOD);
v.resize(n);
}
return res;
}
struct combination {
vector<Mint> fac, finv;
combination() {
init(3000000);
}
void init(const int n) {
if (fac.size() > n) return;
const int m = fac.size();
fac.resize(n + 1);
for (int64_t i = m; i <= n; ++i) {
if (i == 0) fac[i] = 1;
else fac[i] = fac[i - 1] * i;
}
finv.resize(n + 1);
finv[n] = fac[n].inverse();
for (int64_t i = n - 1; i >= m; --i) finv[i] = finv[i + 1] * (i + 1);
}
Mint combi(int64_t n, int64_t k) {
if (n < k || n < 0 || k < 0) return 0;
init(n);
return fac[n] * finv[k] * finv[n - k];
}
};
combination combi;
int main(void) {
ll n, s, k;
cin >> n >> s >> k;
Vec ans(s + 1);
ans[0] = 1;
rep(i, n) {
Vec dp(s + 1);
rep(j, s + 1) {
if (i == 0 && j % (n - i) == 0) dp[j] = 1;
if (i > 0 && j % (n - i) == 0 && j / (n - i) >= k) dp[j] = 1;
}
ans = convolution(ans, dp, MOD);
ans.resize(s + 1);
}
co(ans[s]);
return 0;
}