結果
問題 | No.1244 Black Segment |
ユーザー | hitonanode |
提出日時 | 2020-10-02 21:59:43 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 7,034 bytes |
コンパイル時間 | 2,671 ms |
コンパイル使用メモリ | 214,304 KB |
実行使用メモリ | 12,672 KB |
最終ジャッジ日時 | 2024-07-17 13:13:43 |
合計ジャッジ時間 | 5,934 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 1 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | WA | - |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | WA | - |
testcase_11 | AC | 2 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | WA | - |
testcase_14 | AC | 24 ms
6,940 KB |
testcase_15 | WA | - |
testcase_16 | AC | 25 ms
6,940 KB |
testcase_17 | AC | 3 ms
6,940 KB |
testcase_18 | AC | 38 ms
9,216 KB |
testcase_19 | WA | - |
testcase_20 | AC | 44 ms
10,752 KB |
testcase_21 | AC | 41 ms
10,752 KB |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | AC | 40 ms
10,112 KB |
testcase_28 | WA | - |
testcase_29 | AC | 44 ms
10,880 KB |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | WA | - |
testcase_35 | AC | 47 ms
12,672 KB |
testcase_36 | AC | 57 ms
12,672 KB |
testcase_37 | WA | - |
testcase_38 | AC | 49 ms
11,544 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using lint = long long; using pint = pair<int, int>; using plint = pair<lint, lint>; struct fast_ios { fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); }; } fast_ios_; #define FOR(i, begin, end) for (int i = (begin), i##_end_ = (end); i < i##_end_; i++) #define IFOR(i, begin, end) for (int i = (end)-1, i##_begin_ = (begin); i >= i##_begin_; i--) #define REP(i, n) FOR(i, 0, n) #define IREP(i, n) IFOR(i, 0, n) #define ALL(x) (x).begin(), (x).end() // template <typename T, typename V> void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); } template <typename T, typename V, typename... Args> void ndarray(vector<T>& vec, const V& val, int len, Args... args) { vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); }); } template <typename T> bool chmax(T& m, const T q) { return m < q ? (m = q, true) : false; } template <typename T> bool chmin(T& m, const T q) { return m > q ? (m = q, true) : false; } template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2>& l, const pair<T1, T2>& r) { return make_pair(l.first + r.first, l.second + r.second); } template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2>& l, const pair<T1, T2>& r) { return make_pair(l.first - r.first, l.second - r.second); } template <typename T> vector<T> srtunq(vector<T> vec) { return sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()), vec; } template <typename T> istream& operator>>(istream& is, vector<T>& vec) { return for_each(begin(vec), end(vec), [&](T& v) { is >> v; }), is; } // output template <typename T, typename V> ostream& dmpseq(ostream&, const T&, const string&, const string&, const string&); #if __cplusplus >= 201703L template <typename... T> ostream& operator<<(ostream& os, const tuple<T...>& tpl) { return apply([&os](auto&&... args) { ((os << args << ','), ...); }, tpl), os; } #endif // template <typename T1, typename T2> ostream& operator<<(ostream& os, const pair<T1, T2>& p) { return os << '(' << p.first << ',' << p.second << ')'; } template <typename T> ostream& operator<<(ostream& os, const vector<T>& x) { return dmpseq<vector<T>, T>(os, x, "[", ",", "]"); } template <typename T> ostream& operator<<(ostream& os, const deque<T>& x) { return dmpseq<deque<T>, T>(os, x, "deq[", ",", "]"); } template <typename T> ostream& operator<<(ostream& os, const set<T>& x) { return dmpseq<set<T>, T>(os, x, "{", ",", "}"); } template <typename T, typename TH> ostream& operator<<(ostream& os, const unordered_set<T, TH>& x) { return dmpseq<unordered_set<T, TH>, T>(os, x, "{", ",", "}"); } template <typename T> ostream& operator<<(ostream& os, const multiset<T>& x) { return dmpseq<multiset<T>, T>(os, x, "{", ",", "}"); } template <typename TK, typename T> ostream& operator<<(ostream& os, const map<TK, T>& x) { return dmpseq<map<TK, T>, pair<TK, T>>(os, x, "{", ",", "}"); } template <typename TK, typename T, typename TH> ostream& operator<<(ostream& os, const unordered_map<TK, T, TH>& x) { return dmpseq<unordered_map<TK, T, TH>, pair<TK, T>>(os, x, "{", ",", "}"); } template <typename T, typename V> ostream& dmpseq(ostream& os, const T& seq, const string& pre, const string& sp, const string& suf) { return os << pre, for_each(begin(seq), end(seq), [&](V x) { os << x << sp; }), os << suf; } template <typename T> void print(const vector<T>& x) { dmpseq<vector<T>, T>(cout, x, "", " ", "\n"); } #define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl template<typename T> struct ShortestPath { int V, E; int INVALID = -1; std::vector<std::vector<std::pair<int, T>>> to; ShortestPath() = default; ShortestPath(int V) : V(V), E(0), to(V) {} void add_edge(int s, int t, T len) { assert(0 <= s and s < V); assert(0 <= t and t < V); to[s].emplace_back(t, len); E++; } std::vector<T> dist; std::vector<int> prev; // Dijkstra algorithm // Complexity: O(E log E) void Dijkstra(int s) { assert(0 <= s and s < V); dist.assign(V, std::numeric_limits<T>::max()); dist[s] = 0; prev.assign(V, INVALID); using P = std::pair<T, int>; std::priority_queue<P, std::vector<P>, std::greater<P>> pq; pq.emplace(0, s); while(!pq.empty()) { T d; int v; std::tie(d, v) = pq.top(); pq.pop(); if (dist[v] < d) continue; for (auto nx : to[v]) { T dnx = d + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; pq.emplace(dnx, nx.first); } } } } // Bellman-Ford algorithm // Complexity: O(VE) bool BellmanFord(int s, int nb_loop) { assert(0 <= s and s < V); dist.assign(V, std::numeric_limits<T>::max()); dist[s] = 0; prev.assign(V, INVALID); for (int l = 0; l < nb_loop; l++) { bool upd = false; for (int v = 0; v < V; v++) { if (dist[v] == std::numeric_limits<T>::max()) continue; for (auto nx : to[v]) { T dnx = dist[v] + nx.second; if (dist[nx.first] > dnx) { dist[nx.first] = dnx, prev[nx.first] = v; upd = true; } } } if (!upd) return true; } return false; } // Warshall-Floyd algorithm // Complexity: O(E + V^3) std::vector<std::vector<T>> dist2d; void WarshallFloyd() { dist2d.assign(V, std::vector<T>(V, std::numeric_limits<T>::max())); for (int i = 0; i < V; i++) { dist2d[i][i] = 0; for (auto p : to[i]) dist2d[i][p.first] = min(dist2d[i][p.first], p.second); } for (int k = 0; k < V; k++) { for (int i = 0; i < V; i++) { if (dist2d[i][k] = std::numeric_limits<T>::max()) continue; for (int j = 0; j < V; j++) { if (dist2d[k][j] = std::numeric_limits<T>::max()) continue; dist2d[i][j] = min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]); } } } } }; int main() { int N, M, A, B; cin >> N >> M >> A >> B; A--; vector<pint> LR(M); for (auto &p : LR) { cin >> p.first >> p.second; p.first--; } int V = N + 2; ShortestPath<int> graph(V); for (auto [l, r] : LR) { graph.add_edge(l, r, 1); graph.add_edge(r, l, 1); } REP(i, A - 1) graph.add_edge(i + 1, i, 0); FOR(j, B, V - 1) graph.add_edge(j + 1, j, 0); // dbg(A); // dbg(B); // dbg(LR); graph.Dijkstra(A); auto ret = graph.dist[B]; cout << (ret > V + 10 ? -1 : ret) << '\n'; }