結果
| 問題 |
No.1244 Black Segment
|
| コンテスト | |
| ユーザー |
hitonanode
|
| 提出日時 | 2020-10-02 21:59:43 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 7,034 bytes |
| コンパイル時間 | 2,112 ms |
| コンパイル使用メモリ | 207,896 KB |
| 最終ジャッジ日時 | 2025-01-15 00:16:21 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 19 WA * 17 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using lint = long long;
using pint = pair<int, int>;
using plint = pair<lint, lint>;
struct fast_ios {
fast_ios() { cin.tie(nullptr), ios::sync_with_stdio(false), cout << fixed << setprecision(20); };
} fast_ios_;
#define FOR(i, begin, end) for (int i = (begin), i##_end_ = (end); i < i##_end_; i++)
#define IFOR(i, begin, end) for (int i = (end)-1, i##_begin_ = (begin); i >= i##_begin_; i--)
#define REP(i, n) FOR(i, 0, n)
#define IREP(i, n) IFOR(i, 0, n)
#define ALL(x) (x).begin(), (x).end()
//
template <typename T, typename V>
void ndarray(vector<T>& vec, const V& val, int len) { vec.assign(len, val); }
template <typename T, typename V, typename... Args>
void ndarray(vector<T>& vec, const V& val, int len, Args... args)
{
vec.resize(len), for_each(begin(vec), end(vec), [&](T& v) { ndarray(v, val, args...); });
}
template <typename T>
bool chmax(T& m, const T q) { return m < q ? (m = q, true) : false; }
template <typename T>
bool chmin(T& m, const T q) { return m > q ? (m = q, true) : false; }
template <typename T1, typename T2>
pair<T1, T2> operator+(const pair<T1, T2>& l, const pair<T1, T2>& r) { return make_pair(l.first + r.first, l.second + r.second); }
template <typename T1, typename T2>
pair<T1, T2> operator-(const pair<T1, T2>& l, const pair<T1, T2>& r) { return make_pair(l.first - r.first, l.second - r.second); }
template <typename T>
vector<T> srtunq(vector<T> vec) { return sort(vec.begin(), vec.end()), vec.erase(unique(vec.begin(), vec.end()), vec.end()), vec; }
template <typename T>
istream& operator>>(istream& is, vector<T>& vec)
{
return for_each(begin(vec), end(vec), [&](T& v) { is >> v; }), is;
}
// output
template <typename T, typename V>
ostream& dmpseq(ostream&, const T&, const string&, const string&, const string&);
#if __cplusplus >= 201703L
template <typename... T>
ostream& operator<<(ostream& os, const tuple<T...>& tpl)
{
return apply([&os](auto&&... args) { ((os << args << ','), ...); }, tpl), os;
}
#endif
//
template <typename T1, typename T2>
ostream& operator<<(ostream& os, const pair<T1, T2>& p) { return os << '(' << p.first << ',' << p.second << ')'; }
template <typename T>
ostream& operator<<(ostream& os, const vector<T>& x) { return dmpseq<vector<T>, T>(os, x, "[", ",", "]"); }
template <typename T>
ostream& operator<<(ostream& os, const deque<T>& x) { return dmpseq<deque<T>, T>(os, x, "deq[", ",", "]"); }
template <typename T>
ostream& operator<<(ostream& os, const set<T>& x) { return dmpseq<set<T>, T>(os, x, "{", ",", "}"); }
template <typename T, typename TH>
ostream& operator<<(ostream& os, const unordered_set<T, TH>& x) { return dmpseq<unordered_set<T, TH>, T>(os, x, "{", ",", "}"); }
template <typename T>
ostream& operator<<(ostream& os, const multiset<T>& x) { return dmpseq<multiset<T>, T>(os, x, "{", ",", "}"); }
template <typename TK, typename T>
ostream& operator<<(ostream& os, const map<TK, T>& x) { return dmpseq<map<TK, T>, pair<TK, T>>(os, x, "{", ",", "}"); }
template <typename TK, typename T, typename TH>
ostream& operator<<(ostream& os, const unordered_map<TK, T, TH>& x) { return dmpseq<unordered_map<TK, T, TH>, pair<TK, T>>(os, x, "{", ",", "}"); }
template <typename T, typename V>
ostream& dmpseq(ostream& os, const T& seq, const string& pre, const string& sp, const string& suf)
{
return os << pre, for_each(begin(seq), end(seq), [&](V x) { os << x << sp; }), os << suf;
}
template <typename T>
void print(const vector<T>& x) { dmpseq<vector<T>, T>(cout, x, "", " ", "\n"); }
#define dbg(x) cerr << #x << " = " << (x) << " (L" << __LINE__ << ") " << __FILE__ << endl
template<typename T>
struct ShortestPath
{
int V, E;
int INVALID = -1;
std::vector<std::vector<std::pair<int, T>>> to;
ShortestPath() = default;
ShortestPath(int V) : V(V), E(0), to(V) {}
void add_edge(int s, int t, T len) {
assert(0 <= s and s < V);
assert(0 <= t and t < V);
to[s].emplace_back(t, len);
E++;
}
std::vector<T> dist;
std::vector<int> prev;
// Dijkstra algorithm
// Complexity: O(E log E)
void Dijkstra(int s) {
assert(0 <= s and s < V);
dist.assign(V, std::numeric_limits<T>::max());
dist[s] = 0;
prev.assign(V, INVALID);
using P = std::pair<T, int>;
std::priority_queue<P, std::vector<P>, std::greater<P>> pq;
pq.emplace(0, s);
while(!pq.empty()) {
T d;
int v;
std::tie(d, v) = pq.top();
pq.pop();
if (dist[v] < d) continue;
for (auto nx : to[v]) {
T dnx = d + nx.second;
if (dist[nx.first] > dnx) {
dist[nx.first] = dnx, prev[nx.first] = v;
pq.emplace(dnx, nx.first);
}
}
}
}
// Bellman-Ford algorithm
// Complexity: O(VE)
bool BellmanFord(int s, int nb_loop) {
assert(0 <= s and s < V);
dist.assign(V, std::numeric_limits<T>::max());
dist[s] = 0;
prev.assign(V, INVALID);
for (int l = 0; l < nb_loop; l++) {
bool upd = false;
for (int v = 0; v < V; v++) {
if (dist[v] == std::numeric_limits<T>::max()) continue;
for (auto nx : to[v]) {
T dnx = dist[v] + nx.second;
if (dist[nx.first] > dnx) {
dist[nx.first] = dnx, prev[nx.first] = v;
upd = true;
}
}
}
if (!upd) return true;
}
return false;
}
// Warshall-Floyd algorithm
// Complexity: O(E + V^3)
std::vector<std::vector<T>> dist2d;
void WarshallFloyd() {
dist2d.assign(V, std::vector<T>(V, std::numeric_limits<T>::max()));
for (int i = 0; i < V; i++) {
dist2d[i][i] = 0;
for (auto p : to[i]) dist2d[i][p.first] = min(dist2d[i][p.first], p.second);
}
for (int k = 0; k < V; k++) {
for (int i = 0; i < V; i++) {
if (dist2d[i][k] = std::numeric_limits<T>::max()) continue;
for (int j = 0; j < V; j++) {
if (dist2d[k][j] = std::numeric_limits<T>::max()) continue;
dist2d[i][j] = min(dist2d[i][j], dist2d[i][k] + dist2d[k][j]);
}
}
}
}
};
int main()
{
int N, M, A, B;
cin >> N >> M >> A >> B;
A--;
vector<pint> LR(M);
for (auto &p : LR)
{
cin >> p.first >> p.second;
p.first--;
}
int V = N + 2;
ShortestPath<int> graph(V);
for (auto [l, r] : LR)
{
graph.add_edge(l, r, 1);
graph.add_edge(r, l, 1);
}
REP(i, A - 1) graph.add_edge(i + 1, i, 0);
FOR(j, B, V - 1) graph.add_edge(j + 1, j, 0);
// dbg(A);
// dbg(B);
// dbg(LR);
graph.Dijkstra(A);
auto ret = graph.dist[B];
cout << (ret > V + 10 ? -1 : ret) << '\n';
}
hitonanode