結果
問題 | No.1244 Black Segment |
ユーザー | T1610 |
提出日時 | 2020-10-08 16:21:55 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 164 ms / 2,000 ms |
コード長 | 9,444 bytes |
コンパイル時間 | 2,544 ms |
コンパイル使用メモリ | 220,812 KB |
実行使用メモリ | 18,768 KB |
最終ジャッジ日時 | 2024-07-20 05:56:02 |
合計ジャッジ時間 | 7,124 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 5 ms
6,940 KB |
testcase_14 | AC | 68 ms
8,576 KB |
testcase_15 | AC | 5 ms
6,940 KB |
testcase_16 | AC | 67 ms
8,832 KB |
testcase_17 | AC | 5 ms
6,944 KB |
testcase_18 | AC | 77 ms
10,920 KB |
testcase_19 | AC | 121 ms
13,288 KB |
testcase_20 | AC | 120 ms
13,520 KB |
testcase_21 | AC | 106 ms
12,820 KB |
testcase_22 | AC | 129 ms
13,104 KB |
testcase_23 | AC | 135 ms
12,964 KB |
testcase_24 | AC | 129 ms
13,724 KB |
testcase_25 | AC | 134 ms
13,948 KB |
testcase_26 | AC | 132 ms
12,784 KB |
testcase_27 | AC | 118 ms
11,648 KB |
testcase_28 | AC | 141 ms
13,708 KB |
testcase_29 | AC | 126 ms
12,288 KB |
testcase_30 | AC | 148 ms
14,144 KB |
testcase_31 | AC | 133 ms
12,928 KB |
testcase_32 | AC | 149 ms
12,672 KB |
testcase_33 | AC | 150 ms
13,300 KB |
testcase_34 | AC | 164 ms
18,768 KB |
testcase_35 | AC | 152 ms
18,424 KB |
testcase_36 | AC | 144 ms
17,144 KB |
testcase_37 | AC | 163 ms
15,880 KB |
testcase_38 | AC | 131 ms
15,268 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i,n) REP(i,0,n) #define REP(i,s,e) for(int i=(s); i<(int)(e); i++) #define repr(i, n) REPR(i, n, 0) #define REPR(i, s, e) for(int i=(int)(s-1); i>=(int)(e); i--) #define all(r) r.begin(),r.end() #define rall(r) r.rbegin(),r.rend() typedef long long ll; typedef vector<int> vi; typedef vector<ll> vl; const ll MOD = 1e9 + 7; template<typename T> T chmax(T& a, const T& b){return a = (a > b ? a : b);} template<typename T> T chmin(T& a, const T& b){return a = (a < b ? a : b);} //有向、無向グラフ共通クラス(隣接リスト) struct Graph { int n; using WEIGHT_TYPE = long long; static const WEIGHT_TYPE INF = 1e18; struct Edge { int to; WEIGHT_TYPE weight; }; struct Edge2 { int from; int to; WEIGHT_TYPE weight; }; vector<vector<Edge>> es; Graph(int n) : n(n), es(n) {} // dijkstra O(E log V) vector<WEIGHT_TYPE> dijkstra(int s) { vector<WEIGHT_TYPE> d(n, INF); d[s] = 0; using P = pair<WEIGHT_TYPE, int>; priority_queue<P, vector<P>, greater<P>> q; q.push({0LL, s}); while(!q.empty()) { auto p = q.top(); q.pop(); int cur = p.second; auto cost = p.first; if(d[cur] < p.first) continue; for(auto &e : es[cur]) { int to = e.to; auto dist = e.weight + cost; if(dist < d[to]) { d[to] = dist; q.push({dist, to}); } } } return d; } // dijkstra O(V^2) vector<WEIGHT_TYPE> dijkstra2(int s) { vector<WEIGHT_TYPE> d(n, INF); d[s] = 0; vector<int> used(n); auto mat = getEdgeMat(); while(1) { int cur = -1; rep(i, n) { if(used[i]) continue; if(cur == -1 || d[i] < d[cur]) cur = i; } if(cur == -1) break; used[cur] = 1; rep(i, n) { chmin(d[i], d[cur] + mat[cur][i]); } } return d; } // warshall_floyd O(n^3) vector<vector<WEIGHT_TYPE>> warshall_floyd() { // vector<vector<WEIGHT_TYPE>> d(n, vector<WEIGHT_TYPE>(n, INF)); // rep(i, n) d[i][i] = 0LL; // rep(i, n) for (auto && e : es[i]) { // int j = e.to; // chmin(d[i][j], e.weight); // } auto d = getEdgeMat(); rep(k, n) rep(i, n) rep(j, n) { chmin(d[i][j], d[i][k] + d[k][j]); } return d; } // 頂点sから到達できるか vector<bool> getVisitable(int s) { vector<bool> ret(n); queue<int> q; q.push(s); ret[s] = true; while(!q.empty()) { auto cur = q.front(); q.pop(); for(auto &&e : es[cur]) { if(!ret[e.to]) { ret[e.to] = true; q.push(e.to); } } } return ret; } // 2部グラフ判定 bool isBipartile() { vector<int> memo(n, -1); rep(i, n) { if(memo[i] != -1) continue; queue<int> q; q.push(i); memo[i] = 0; while(!q.empty()) { auto v = q.front(); q.pop(); for(auto &&e : es[v]) { auto u = e.to; if(memo[u] == -1) { memo[u] = !memo[v]; q.push(u); } else if(memo[u] == memo[v]) { return false; } } } } return true; } vector<vector<WEIGHT_TYPE>> getEdgeMat() { vector<vector<WEIGHT_TYPE>> mat(n, vector<WEIGHT_TYPE>(n, INF)); rep(i, n) mat[i][i] = 0; rep(i, n) { for(auto &&e : es[i]) chmin(mat[i][e.to], e.weight); } return mat; } }; // 無向グラフ struct GraphUD : public Graph { GraphUD(int n) : Graph(n) {} void add_edge(int from, int to, WEIGHT_TYPE weight) { es[from].push_back({to, weight}); es[to].push_back({from, weight}); } vector<Edge2> getEdge2() { vector<Edge2> ret; rep(i, n) for(auto &&e : es[i]) { if(i < e.to) ret.push_back({i, e.to, e.weight}); } return ret; } // 橋の検出 // http://nupioca.hatenadiary.jp/entry/2013/11/03/200006 // Calculate bridges in a undirected graph. // Assume graph is connected and has no parallel edges or self-loops. vector<Edge2> getBridges() { int V = n; // res: bridges vector<Edge2> res; // assume at least the first vertex exists vector<int> low(V, -1); // lowest reacheable index vector<int> pre(V, -1); // pre-order index int count = 0; // pre-order index counter // v: current node // from: parent node function<int(int, int)> dfs = [&](int v, int from) { pre[v] = count++; low[v] = pre[v]; for(auto &&e : es[v]) { int to = e.to; if(pre[to] == -1) { // destination has not been visited // visit destination and update low[v] low[v] = min(low[v], dfs(to, v)); if(low[to] == pre[to]) { // edge is not contained in a closed path -> bridge res.push_back({v, to, e.weight}); } } else { if(from == to) { // ignore a path to parent continue; } low[v] = min(low[v], low[to]); } } return low[v]; }; dfs(0, -1); // start dfs from vertex 0 return res; } }; // 有向グラフ struct GraphD : public Graph { GraphD(int n) : Graph(n) {} void add_edge(int from, int to, WEIGHT_TYPE weight) { es[from].push_back({to, weight}); } vector<Edge2> getEdge2() { vector<Edge2> ret; rep(i, n) for(auto &&e : es[i]) { ret.push_back({i, e.to, e.weight}); } return ret; } GraphD getReverseGraph() { GraphD g(n); rep(i, n) for(auto &&e : es[i]) { g.add_edge(e.to, i, e.weight); } return g; } vector<vector<int>> scc() { vector<vector<int>> res; vector<int> cmp(n); vector<int> vs; vector<vector<int>> r_es(n); rep(i, n) for(auto &&e : es[i]) { int j = e.to; r_es[j].push_back(i); } vector<bool> used(n); function<void(int)> dfs = [&](int v) { used[v] = true; for(auto &&e : es[v]) { int to = e.to; if(!used[to]) dfs(to); } vs.push_back(v); }; function<void(int, int)> rdfs = [&](int v, int k) { used[v] = true; cmp[v] = k; for(auto &&to : r_es[v]) { if(!used[to]) rdfs(to, k); } }; fill(all(used), 0); vs.clear(); for(int v = 0; v < n; v++) { if(!used[v]) dfs(v); } fill(all(used), 0); int k = 0; for(int i = vs.size() - 1; i >= 0; i--) { if(!used[vs[i]]) rdfs(vs[i], k++); } res.clear(); res.resize(k); for(int i = 0; i < n; i++) { res[cmp[i]].push_back(i); } return res; } // bellmanFord 負閉路があるなら, dist[s] = INF | O(VE) vector<WEIGHT_TYPE> bellmanFord(int s) { vector<WEIGHT_TYPE> dist(n, INF); dist[s] = 0; auto es = getEdge2(); rep(i, n) { for(auto &&e : es) { if(dist[e.to] > dist[e.from] + e.weight) { dist[e.to] = dist[e.from] + e.weight; if(i == n - 1) { dist[s] = INF; return dist; } } } } return dist; } // bellmanFord s->tの経路上に負閉路があるなら, dist[s] = INF | O(VE) vector<WEIGHT_TYPE> bellmanFord2(int s, int t) { vector<WEIGHT_TYPE> dist(n, INF); auto f1 = getVisitable(s); auto f2 = getReverseGraph().getVisitable(t); dist[s] = 0; auto es = getEdge2(); rep(i, n) { for(auto &&e : es) { if(!(f1[e.from] && f2[e.to])) continue; if(dist[e.to] > dist[e.from] + e.weight) { dist[e.to] = dist[e.from] + e.weight; if(i == n - 1) { dist[s] = INF; return dist; } } } } return dist; } }; int main(){ int n, m, a, b; cin >> n >> m >> a >> b; --a; --b; GraphUD g(n+3); int s = n+1, t = n+2; rep(i, m) { int l, r; cin >> l >> r; g.add_edge(l-1, r, 1); } rep(i, a+1) g.add_edge(s, i, 0); REP(i, b+1, n+1) g.add_edge(i, t, 0); ll ans = g.dijkstra(s)[t]; if(ans == Graph::INF) ans = -1; cout << ans << '\n'; return 0; }