結果
問題 | No.1302 Random Tree Score |
ユーザー | tpyneriver |
提出日時 | 2020-10-29 21:11:02 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 1,882 ms / 3,000 ms |
コード長 | 9,079 bytes |
コンパイル時間 | 238 ms |
コンパイル使用メモリ | 82,304 KB |
実行使用メモリ | 198,704 KB |
最終ジャッジ日時 | 2024-07-21 22:39:21 |
合計ジャッジ時間 | 17,954 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 47 ms
62,720 KB |
testcase_01 | AC | 46 ms
62,720 KB |
testcase_02 | AC | 485 ms
104,036 KB |
testcase_03 | AC | 924 ms
137,180 KB |
testcase_04 | AC | 478 ms
103,500 KB |
testcase_05 | AC | 1,786 ms
197,580 KB |
testcase_06 | AC | 1,783 ms
197,960 KB |
testcase_07 | AC | 489 ms
104,452 KB |
testcase_08 | AC | 948 ms
139,060 KB |
testcase_09 | AC | 1,882 ms
198,212 KB |
testcase_10 | AC | 1,765 ms
192,436 KB |
testcase_11 | AC | 472 ms
102,136 KB |
testcase_12 | AC | 1,779 ms
195,688 KB |
testcase_13 | AC | 47 ms
62,720 KB |
testcase_14 | AC | 1,820 ms
198,704 KB |
testcase_15 | AC | 1,822 ms
198,380 KB |
testcase_16 | AC | 46 ms
62,336 KB |
ソースコード
#Convolution_998244353 MOD = 998244353 ROOT = 3 sum_e = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 0, 0, 0, 0, 0, 0, 0, 0, 0) sum_ie = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 0, 0, 0, 0, 0, 0, 0, 0, 0) def butterfly(arr): n = len(arr) h = (n - 1).bit_length() for ph in range(1, h + 1): w = 1 << (ph - 1) p = 1 << (h - ph) now = 1 for s in range(w): offset = s << (h - ph + 1) for i in range(p): l = arr[i + offset] r = arr[i + offset + p] * now arr[i + offset] = (l + r) % MOD arr[i + offset + p] = (l - r) % MOD now *= sum_e[(~s & -~s).bit_length() - 1] now %= MOD def butterfly_inv(arr): n = len(arr) h = (n - 1).bit_length() for ph in range(1, h + 1)[::-1]: w = 1 << (ph - 1) p = 1 << (h - ph) inow = 1 for s in range(w): offset = s << (h - ph + 1) for i in range(p): l = arr[i + offset] r = arr[i + offset + p] arr[i + offset] = (l + r) % MOD arr[i + offset + p] = (MOD + l - r) * inow % MOD inow *= sum_ie[(~s & -~s).bit_length() - 1] inow %= MOD def convolution(a, b): n = len(a) m = len(b) if not n or not m: return [] if min(n, m) <= 50: if n < m: n, m = m, n a, b = b, a res = [0] * (n + m - 1) for i in range(n): for j in range(m): res[i + j] += a[i] * b[j] res[i + j] %= MOD return res z = 1 << (n + m - 2).bit_length() a += [0] * (z - n) b += [0] * (z - m) butterfly(a) butterfly(b) for i in range(z): a[i] *= b[i] a[i] %= MOD butterfly_inv(a) a = a[:n + m - 1] iz = pow(z, MOD - 2, MOD) for i in range(n + m - 1): a[i] *= iz a[i] %= MOD return a def autocorrelation(a): n = len(a) if not n: return [] if n <= 50: res = [0] * (2 * n - 1) for i in range(n): for j in range(n): res[i + j] += a[i] * a[j] res[i + j] %= MOD return res z = 1 << (2 * n - 2).bit_length() a += [0] * (z - n) butterfly(a) for i in range(z): a[i] *= a[i] a[i] %= MOD butterfly_inv(a) a = a[:2 * n - 1] iz = pow(z, MOD - 2, MOD) for i in range(2 * n - 1): a[i] *= iz a[i] %= MOD return a def add(a, b): return [(va + vb) % MOD for va, vb in zip(a, b)] def sub(a, b): return [(va - vb) % MOD for va, vb in zip(a, b)] def times(a, k): return [v * k % MOD for v in a] def multiply(a, b): return convolution(a.copy(), b.copy()) def square(a): return autocorrelation(a.copy()) def inverse(a): n = len(a) r = pow(a[0], MOD - 2, MOD) m = 1 tmp = [r] while m < n: tmp += [0] * m m *= 2 tmp = sub(times(tmp, 2), multiply(a[:m], square(tmp.copy())[:m])) res = tmp[:n] return res def differentiate(a): n = len(a) res = [0] * n for i in range(1, n): res[i - 1] = a[i] * i % MOD return res def integrate(a): n = len(a) res = [0] * n for i in range(n - 1): res[i + 1] = a[i] * pow(i + 1, MOD - 2, MOD) % MOD return res def log(a): #assert a[0] == 1 n = len(a) return integrate(multiply(differentiate(a), inverse(a))[:n]) def exp(a): #assert a[0] == 0 n = len(a) res = [1] g = [1] q = differentiate(a) m = 1 while m < n: g = sub(times(g, 2), multiply(res, square(g)[:m])) g += [0] * m res += [0] * m m *= 2 w = add(q[:m], multiply(g, sub(differentiate(res), multiply(res, q[:m])[:m]))[:m]) res = add(res, multiply(res, sub(a[:m], integrate(w)))[:m]) return res[:n] #Convolution_998244353 MOD = 998244353 ROOT = 3 sum_e = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 0, 0, 0, 0, 0, 0, 0, 0, 0) sum_ie = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 0, 0, 0, 0, 0, 0, 0, 0, 0) def butterfly(arr): n = len(arr) h = (n - 1).bit_length() for ph in range(1, h + 1): w = 1 << (ph - 1) p = 1 << (h - ph) now = 1 for s in range(w): offset = s << (h - ph + 1) for i in range(p): l = arr[i + offset] r = arr[i + offset + p] * now arr[i + offset] = (l + r) % MOD arr[i + offset + p] = (l - r) % MOD now *= sum_e[(~s & -~s).bit_length() - 1] now %= MOD def butterfly_inv(arr): n = len(arr) h = (n - 1).bit_length() for ph in range(1, h + 1)[::-1]: w = 1 << (ph - 1) p = 1 << (h - ph) inow = 1 for s in range(w): offset = s << (h - ph + 1) for i in range(p): l = arr[i + offset] r = arr[i + offset + p] arr[i + offset] = (l + r) % MOD arr[i + offset + p] = (MOD + l - r) * inow % MOD inow *= sum_ie[(~s & -~s).bit_length() - 1] inow %= MOD def convolution(a, b): n = len(a) m = len(b) if not n or not m: return [] if min(n, m) <= 50: if n < m: n, m = m, n a, b = b, a res = [0] * (n + m - 1) for i in range(n): for j in range(m): res[i + j] += a[i] * b[j] res[i + j] %= MOD return res z = 1 << (n + m - 2).bit_length() a += [0] * (z - n) b += [0] * (z - m) butterfly(a) butterfly(b) for i in range(z): a[i] *= b[i] a[i] %= MOD butterfly_inv(a) a = a[:n + m - 1] iz = pow(z, MOD - 2, MOD) for i in range(n + m - 1): a[i] *= iz a[i] %= MOD return a def autocorrelation(a): n = len(a) if not n: return [] if n <= 50: res = [0] * (2 * n - 1) for i in range(n): for j in range(n): res[i + j] += a[i] * a[j] res[i + j] %= MOD return res z = 1 << (2 * n - 2).bit_length() a += [0] * (z - n) butterfly(a) for i in range(z): a[i] *= a[i] a[i] %= MOD butterfly_inv(a) a = a[:2 * n - 1] iz = pow(z, MOD - 2, MOD) for i in range(2 * n - 1): a[i] *= iz a[i] %= MOD return a def add(a, b): return [(va + vb) % MOD for va, vb in zip(a, b)] def sub(a, b): return [(va - vb) % MOD for va, vb in zip(a, b)] def times(a, k): return [v * k % MOD for v in a] def multiply(a, b): return convolution(a.copy(), b.copy()) def square(a): return autocorrelation(a.copy()) def inverse(a): n = len(a) r = pow(a[0], MOD - 2, MOD) m = 1 tmp = [r] while m < n: tmp += [0] * m m *= 2 tmp = sub(times(tmp, 2), multiply(a[:m], square(tmp.copy())[:m])) res = tmp[:n] return res def differentiate(a): n = len(a) res = [0] * n for i in range(1, n): res[i - 1] = a[i] * i % MOD return res def integrate(a): n = len(a) res = [0] * n for i in range(n - 1): res[i + 1] = a[i] * pow(i + 1, MOD - 2, MOD) % MOD return res def log(a): #assert a[0] == 1 n = len(a) return integrate(multiply(differentiate(a), inverse(a))[:n]) def exp(a): #assert a[0] == 0 n = len(a) res = [1] g = [1] q = differentiate(a) m = 1 while m < n: g = sub(times(g, 2), multiply(res, square(g)[:m])) g += [0] * m res += [0] * m m *= 2 w = add(q[:m], multiply(g, sub(differentiate(res), multiply(res, q[:m])[:m]))[:m]) res = add(res, multiply(res, sub(a[:m], integrate(w)))[:m]) return res[:n] def make_fac(limit): fac = [1]*limit for i in range(2,limit): fac[i] = i * fac[i-1]%MOD faci = [0]*limit faci[-1] = pow(fac[-1], MOD -2, MOD) for i in range(limit-2, -1, -1): faci[i] = faci[i+1] * (i + 1) % MOD return fac, faci fac, faci = make_fac(134139) import sys readline = sys.stdin.readline N = int(readline()) f = [(i+1)*faci[i]%MOD for i in range(N)] print(exp(times(log(f), N))[N-2]*fac[N-2]*pow(N, (N-2)*(MOD-2)%(MOD-1), MOD)%MOD)