結果
| 問題 |
No.1283 Extra Fee
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2020-11-19 18:52:47 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 366 ms / 2,000 ms |
| コード長 | 3,283 bytes |
| コンパイル時間 | 1,258 ms |
| コンパイル使用メモリ | 91,956 KB |
| 最終ジャッジ日時 | 2025-01-16 01:42:56 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 30 |
ソースコード
#line 2 "/Users/tiramister/CompetitiveProgramming/Cpp/CppLibrary/tools/vector_alias.hpp"
#include <vector>
template <class T>
std::vector<T> vec(int len, T elem) { return std::vector<T>(len, elem); }
#line 2 "/Users/tiramister/CompetitiveProgramming/Cpp/CppLibrary/Graph/dijkstra.hpp"
#line 2 "/Users/tiramister/CompetitiveProgramming/Cpp/CppLibrary/Tools/heap_alias.hpp"
#include <queue>
template <class T>
using MaxHeap = std::priority_queue<T>;
template <class T>
using MinHeap = std::priority_queue<T, std::vector<T>, std::greater<T>>;
#line 2 "/Users/tiramister/CompetitiveProgramming/Cpp/CppLibrary/Graph/graph.hpp"
#line 4 "/Users/tiramister/CompetitiveProgramming/Cpp/CppLibrary/Graph/graph.hpp"
template <class Cost = int>
struct Edge {
int src, dst;
Cost cost;
Edge() = default;
Edge(int src, int dst, Cost cost = 1)
: src(src), dst(dst), cost(cost){};
bool operator<(const Edge<Cost>& e) const { return cost < e.cost; }
bool operator>(const Edge<Cost>& e) const { return cost > e.cost; }
};
template <class Cost = int>
struct Graph : public std::vector<std::vector<Edge<Cost>>> {
using std::vector<std::vector<Edge<Cost>>>::vector;
void span(bool direct, int src, int dst, Cost cost = 1) {
(*this)[src].emplace_back(src, dst, cost);
if (!direct) (*this)[dst].emplace_back(dst, src, cost);
}
};
#line 5 "/Users/tiramister/CompetitiveProgramming/Cpp/CppLibrary/Graph/dijkstra.hpp"
template <class Cost>
std::vector<Cost> dijkstra(const Graph<Cost>& graph, int s) {
std::vector<Cost> dist(graph.size(), -1);
dist[s] = 0;
MinHeap<std::pair<Cost, int>> que;
que.emplace(0, s);
while (!que.empty()) {
auto [d, v] = que.top();
que.pop();
if (d > dist[v]) continue;
for (const auto& e : graph[v]) {
if (dist[e.dst] != -1 &&
dist[e.dst] <= dist[v] + e.cost) continue;
dist[e.dst] = dist[v] + e.cost;
que.emplace(dist[e.dst], e.dst);
}
}
return dist;
}
#line 3 "main.cpp"
#include <iostream>
#include <algorithm>
#line 7 "main.cpp"
const std::vector<std::pair<int, int>>
dxys{{0, 1}, {0, -1}, {1, 0}, {-1, 0}};
using lint = long long;
void solve() {
int n, m;
std::cin >> n >> m;
auto xss = vec(n, vec(n, 0LL));
while (m--) {
int u, v;
std::cin >> u >> v;
std::cin >> xss[--u][--v];
}
auto enc = [&](int x, int y, int t) {
return (x * n + y) * 2 + t;
};
Graph<lint> graph(n * n * 2);
for (int x = 0; x < n; ++x) {
for (int y = 0; y < n; ++y) {
for (auto [dx, dy] : dxys) {
auto nx = x + dx,
ny = y + dy;
if (nx < 0 || n <= nx ||
ny < 0 || n <= ny) continue;
for (int t = 0; t <= 1; ++t) {
graph.span(true, enc(x, y, t), enc(nx, ny, t), xss[nx][ny] + 1);
}
graph.span(true, enc(x, y, 0), enc(nx, ny, 1), 1);
}
}
}
auto ds = dijkstra(graph, enc(0, 0, 0));
std::cout << ds[enc(n - 1, n - 1, 1)] << "\n";
}
int main() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
solve();
return 0;
}