結果
問題 | No.184 たのしい排他的論理和(HARD) |
ユーザー | masayoshi361 |
提出日時 | 2020-11-19 21:15:57 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 16,595 bytes |
コンパイル時間 | 3,463 ms |
コンパイル使用メモリ | 217,160 KB |
実行使用メモリ | 48,536 KB |
最終ジャッジ日時 | 2024-07-23 11:48:42 |
合計ジャッジ時間 | 10,346 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | RE | - |
testcase_01 | RE | - |
testcase_02 | RE | - |
testcase_03 | RE | - |
testcase_04 | RE | - |
testcase_05 | RE | - |
testcase_06 | RE | - |
testcase_07 | RE | - |
testcase_08 | RE | - |
testcase_09 | RE | - |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | RE | - |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | RE | - |
testcase_16 | RE | - |
testcase_17 | RE | - |
testcase_18 | RE | - |
testcase_19 | RE | - |
testcase_20 | RE | - |
testcase_21 | RE | - |
testcase_22 | RE | - |
testcase_23 | RE | - |
testcase_24 | RE | - |
testcase_25 | RE | - |
testcase_26 | RE | - |
testcase_27 | RE | - |
testcase_28 | RE | - |
testcase_29 | RE | - |
testcase_30 | RE | - |
testcase_31 | RE | - |
testcase_32 | RE | - |
testcase_33 | RE | - |
testcase_34 | RE | - |
testcase_35 | RE | - |
testcase_36 | RE | - |
ソースコード
#line 1 "verify/yuki-650.cpp" #define PROBLEM "https://yukicoder.me/problems/no/650" #line 1 "library/template/template.cpp" /* #region header */ #pragma GCC optimize("Ofast") #include <bits/stdc++.h> using namespace std; // types using ll = long long; using ull = unsigned long long; using ld = long double; typedef pair<ll, ll> Pl; typedef pair<int, int> Pi; typedef vector<ll> vl; typedef vector<int> vi; typedef vector<char> vc; template <typename T> using mat = vector<vector<T>>; typedef vector<vector<int>> vvi; typedef vector<vector<long long>> vvl; typedef vector<vector<char>> vvc; // abreviations #define all(x) (x).begin(), (x).end() #define rall(x) (x).rbegin(), (x).rend() #define rep_(i, a_, b_, a, b, ...) for (ll i = (a), max_i = (b); i < max_i; i++) #define rep(i, ...) rep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__) #define rrep_(i, a_, b_, a, b, ...) \ for (ll i = (b - 1), min_i = (a); i >= min_i; i--) #define rrep(i, ...) rrep_(i, __VA_ARGS__, __VA_ARGS__, 0, __VA_ARGS__) #define srep(i, a, b, c) for (ll i = (a), max_i = (b); i < max_i; i += c) #define SZ(x) ((int)(x).size()) #define pb(x) push_back(x) #define eb(x) emplace_back(x) #define mp make_pair //入出力 #define print(x) cout << x << endl template <class T> ostream& operator<<(ostream& os, const vector<T>& v) { for (auto& e : v) cout << e << " "; cout << endl; return os; } void scan(int& a) { cin >> a; } void scan(long long& a) { cin >> a; } void scan(char& a) { cin >> a; } void scan(double& a) { cin >> a; } void scan(string& a) { cin >> a; } template <class T> void scan(vector<T>& a) { for (auto& i : a) scan(i); } #define vsum(x) accumulate(all(x), 0LL) #define vmax(a) *max_element(all(a)) #define vmin(a) *min_element(all(a)) #define lb(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define ub(c, x) distance((c).begin(), upper_bound(all(c), (x))) // functions // gcd(0, x) fails. ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } ll lcm(ll a, ll b) { return a / gcd(a, b) * b; } template <class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } template <typename T> T mypow(T x, ll n) { T ret = 1; while (n > 0) { if (n & 1) (ret *= x); (x *= x); n >>= 1; } return ret; } ll modpow(ll x, ll n, const ll mod) { ll ret = 1; while (n > 0) { if (n & 1) (ret *= x); (x *= x); n >>= 1; x %= mod; ret %= mod; } return ret; } uint64_t my_rand(void) { static uint64_t x = 88172645463325252ULL; x = x ^ (x << 13); x = x ^ (x >> 7); return x = x ^ (x << 17); } int popcnt(ull x) { return __builtin_popcountll(x); } // graph template template <typename T> struct edge { int src, to; T cost; edge(int to, T cost) : src(-1), to(to), cost(cost) {} edge(int src, int to, T cost) : src(src), to(to), cost(cost) {} edge& operator=(const int& x) { to = x; return *this; } bool operator<(const edge<T>& r) const { return cost < r.cost; } operator int() const { return to; } }; template <typename T> using Edges = vector<edge<T>>; template <typename T> using WeightedGraph = vector<Edges<T>>; using UnWeightedGraph = vector<vector<int>>; struct Timer { clock_t start_time; void start() { start_time = clock(); } int lap() { // return x ms. return (clock() - start_time) * 1000 / CLOCKS_PER_SEC; } }; /* #endregion*/ // constant #define inf 1000000000ll #define INF 4000000004000000000LL #define endl '\n' const long double eps = 0.000000000000001; const long double PI = 3.141592653589793; #line 3 "verify/yuki-650.cpp" // library #line 1 "library/graph/tree/HLD.cpp" struct HLD { vector<vector<int>> G; vector<int> parent, depth, sub_size, v_id, id_to_v, head; HLD(int n) : G(n), v_id(n, -1), head(n), sub_size(n, 1), parent(n, -1), depth(n, 0), id_to_v(n) {} void add_edge(int u, int v) { G[u].emplace_back(v); G[v].emplace_back(u); } void build(int root = 0) { int pos = 0; dfs_size(root); head[root] = root; dfs_hld(root, pos); } void dfs_size(int v) { for (int& nv : G[v]) { if (nv == parent[v]) { nv = G[v].back(); G[v].pop_back(); } } for (int& nv : G[v]) { parent[nv] = v; depth[nv] = depth[v] + 1; dfs_size(nv); sub_size[v] += sub_size[nv]; if (sub_size[nv] > sub_size[G[v][0]]) swap(nv, G[v][0]); } } void dfs_hld(int v, int& pos) { v_id[v] = pos; id_to_v[pos++] = v; for (int nv : G[v]) { head[nv] = (nv == G[v][0] ? head[v] : nv); dfs_hld(nv, pos); } } int lca(int u, int v) { while (1) { if (v_id[u] > v_id[v]) swap(u, v); if (head[u] == head[v]) return u; v = parent[head[v]]; } } int distance(int u, int v) { return depth[u] + depth[v] - 2 * depth[lca(u, v)]; } // update vertexes in [u, v] with f template <typename F> void update(int u, int v, const F& f) { while (1) { if (v_id[u] > v_id[v]) swap(u, v); f(max(v_id[head[v]], v_id[u]), v_id[v]); if (head[u] != head[v]) v = parent[head[v]]; else break; } } // get res for [u, v] with query q and merge each value with f // root->leaf template <typename T, typename Q, typename F> T query(int u, int v, T id, const Q& q, const F& f) { T l = id, r = id; while (1) { if (v_id[u] > v_id[v]) { swap(u, v); swap(l, r); } l = f(q(max(v_id[head[v]], v_id[u]), v_id[v]), l); if (head[u] != head[v]) v = parent[head[v]]; else break; } return f(r, l); } // update edges between u, v inclusive with func f template <typename F> void update_edge(int u, int v, const F& f) { while (1) { if (v_id[u] > v_id[v]) swap(u, v); if (head[u] != head[v]) { f(v_id[head[v]], v_id[v]); v = parent[head[v]]; } else { if (u != v) f(v_id[u] + 1, v_id[v]); break; } } } // query for edges between u, v inclusive with query q and merge func f // root->leaf template <typename T, typename Q, typename F> T query_edge(int u, int v, T id, const Q& q, const F& f) { T l = id, r = id; while (1) { if (v_id[u] > v_id[v]) { swap(u, v); swap(l, r); } if (head[u] != head[v]) { l = f(q(v_id[head[v]], v_id[v]), l); v = parent[head[v]]; } else { if (u != v) l = f(q(v_id[u] + 1, v_id[v]), l); break; } } return f(r, l); } }; #line 1 "library/math/Matrix.cpp" template <class T> struct Matrix { vector<vector<T>> A; Matrix() {} Matrix(size_t n, size_t m) : A(n, vector<T>(m, 0)) {} Matrix(size_t n) : A(n, vector<T>(n, 0)){}; Matrix(vector<vector<T>> a) { A = a; } size_t height() const { return (A.size()); } size_t width() const { return (A[0].size()); } inline const vector<T> &operator[](int k) const { return (A.at(k)); } inline vector<T> &operator[](int k) { return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); for (int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); assert(p == B.height()); vector<vector<T>> C(n, vector<T>(m, 0)); for (int i = 0; i < n; i++) for (int j = 0; j < m; j++) for (int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]); A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while (k > 0) { if (k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } Matrix pow(long long n) { Matrix ret = I(height()); Matrix x = Matrix(*this); while (n > 0) { if (n & 1) (ret *= x); (x *= x); n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for (int i = 0; i < n; i++) { os << "["; for (int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() { Matrix B(*this); assert(width() == height()); T ret = 1; for (int i = 0; i < width(); i++) { int idx = -1; for (int j = i; j < width(); j++) { if (B[j][i] != 0) idx = j; } if (idx == -1) return (0); if (i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for (int j = 0; j < width(); j++) { B[i][j] /= vv; } for (int j = i + 1; j < width(); j++) { T a = B[j][i]; for (int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; #line 1 "library/mod/modint.cpp" template <int mod> struct modint { int x; modint() : x(0) {} modint(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} modint& operator+=(const modint& p) { if ((x += p.x) >= mod) x -= mod; return *this; } modint& operator-=(const modint& p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } modint& operator*=(const modint& p) { x = (int)(1LL * x * p.x % mod); return *this; } modint& operator/=(const modint& p) { *this *= p.inverse(); return *this; } modint operator-() const { return modint(-x); } modint operator+(const modint& p) const { return modint(*this) += p; } modint operator-(const modint& p) const { return modint(*this) -= p; } modint operator*(const modint& p) const { return modint(*this) *= p; } modint operator/(const modint& p) const { return modint(*this) /= p; } bool operator==(const modint& p) const { return x == p.x; } bool operator!=(const modint& p) const { return x != p.x; } modint inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return modint(u); } modint pow(int64_t n) const { modint ret(1), mul(x); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream& operator<<(ostream& os, const modint& p) { return os << p.x; } friend istream& operator>>(istream& is, modint& a) { long long t; is >> t; a = modint<mod>(t); return (is); } static int get_mod() { return mod; } inline int get() { return x; } }; #line 1 "library/structure/segtree/SegmentTree.cpp" /** * @brief Segment Tree * @docs docs/segmenttree.md */ template <typename Monoid> struct SegmentTree { using F = function<Monoid(Monoid, Monoid)>; int sz; vector<Monoid> seg; const F f; const Monoid M1; SegmentTree(int n, const F f, const Monoid &M1) : f(f), M1(M1) { sz = 1; while (sz < n) sz <<= 1; seg.assign(2 * sz, M1); } void set(int k, const Monoid &x) { seg[k + sz] = x; } void build() { for (int k = sz - 1; k > 0; k--) { seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]); } } void update(int k, const Monoid &x) { k += sz; seg[k] = x; while (k >>= 1) { seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]); } } Monoid query(int a, int b) { Monoid L = M1, R = M1; for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if (a & 1) L = f(L, seg[a++]); if (b & 1) R = f(seg[--b], R); } return f(L, R); } Monoid operator[](const int &k) const { return seg[k + sz]; } template <typename C> int find_subtree(int a, const C &check, Monoid &M, bool type) { while (a < sz) { Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]); if (check(nxt)) a = 2 * a + type; else M = nxt, a = 2 * a + 1 - type; } return a - sz; } // check(seg[i])を満たす最小のb<=iを返す.なければ-1 template <typename C> int find_first(int a, const C &check) { Monoid L = M1; if (a <= 0) { if (check(f(L, seg[1]))) return find_subtree(1, check, L, false); return -1; } int b = sz; for (a += sz, b += sz; a < b; a >>= 1, b >>= 1) { if (a & 1) { Monoid nxt = f(L, seg[a]); if (check(nxt)) return find_subtree(a, check, L, false); L = nxt; ++a; } } return -1; } // check(seg[i])を満たす最小のi<bを返す.なければ-1 template <typename C> int find_last(int b, const C &check) { Monoid R = M1; if (b >= sz) { if (check(f(seg[1], R))) return find_subtree(1, check, R, true); return -1; } int a = sz; for (b += sz; a < b; a >>= 1, b >>= 1) { if (b & 1) { Monoid nxt = f(seg[--b], R); if (check(nxt)) return find_subtree(b, check, R, true); R = nxt; } } return -1; } }; #line 8 "verify/yuki-650.cpp" using mint = modint<1000000007>; using mmat = Matrix<mint>; int main() { int n, q; cin >> n; HLD hld(n); vector<Pi> etov(n - 1); rep(i, n - 1) { int a, b; cin >> a >> b; hld.add_edge(a, b); etov[i] = mp(a, b); } cin >> q; SegmentTree<mmat> seg( n, [&](mmat a, mmat b) { return a * b; }, mmat::I(2)); hld.build(); rep(_, q) { char t; cin >> t; if (t == 'g') { int u, v; cin >> u >> v; mmat res = hld.query_edge( u, v, mmat::I(2), [&](int a, int b) { return seg.query(a, b + 1); }, [&](mmat a, mmat b) { return a * b; }); cout << res[0][0] << " " << res[0][1] << " " << res[1][0] << " " << res[1][1] << "\n"; } else { int i, a, b, c, d; cin >> i >> a >> b >> c >> d; int u = etov[i].first, v = etov[i].second; hld.update_edge(u, v, [&](int l, int r) { return seg.update(l, mmat({{a, b}, {c, d}})); }); } } }