結果
問題 | No.1301 Strange Graph Shortest Path |
ユーザー | wolgnik |
提出日時 | 2020-11-27 22:41:19 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,155 bytes |
コンパイル時間 | 179 ms |
コンパイル使用メモリ | 82,440 KB |
実行使用メモリ | 218,924 KB |
最終ジャッジ日時 | 2024-07-26 19:58:18 |
合計ジャッジ時間 | 20,001 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 40 ms
53,852 KB |
testcase_01 | AC | 38 ms
55,372 KB |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | WA | - |
testcase_31 | WA | - |
testcase_32 | AC | 40 ms
54,728 KB |
testcase_33 | AC | 274 ms
124,180 KB |
testcase_34 | WA | - |
ソースコード
import sys input = sys.stdin.readline N, M = map(int, input().split()) from heapq import heappop, heappush, heapify class MinCostFlow(): def __init__(self, n): self.n = n self.graph = [[] for _ in range(n)] self.pos = [] def add_edge(self, fr, to, cap, cost): m = len(self.pos) self.pos.append((fr, len(self.graph[fr]))) self.graph[fr].append([to, len(self.graph[to]), cap, cost]) self.graph[to].append([fr, len(self.graph[fr]) - 1, 0, -cost]) return m def get_edge(self, idx): to, rev, cap, cost = self.graph[self.pos[idx][0]][self.pos[idx][1]] rev_to, rev_rev, rev_cap, rev_cost = self.graph[to][rev] return self.pos[idx][0], to, cap + rev_cap, rev_cap, cost def edges(self): for i in range(len(self.pos)): yield self.get_edge(i) def dual_ref(self, s, t): dist = [2**63 - 1] * self.n dist[s] = 0 vis = [0] * self.n self.pv = [-1] * self.n self.pe = [-1] * self.n queue = [] heappush(queue, (0, s)) while queue: k, v = heappop(queue) if vis[v]: continue vis[v] = True if v == t: break for i in range(len(self.graph[v])): to, rev, cap, cost = self.graph[v][i] if vis[to] or cap == 0: continue cost += self.dual[v] - self.dual[to] if dist[to] - dist[v] > cost: dist[to] = dist[v] + cost self.pv[to] = v self.pe[to] = i heappush(queue, (dist[to], to)) if not vis[t]: return False for v in range(self.n): if not vis[v]: continue self.dual[v] -= dist[t] - dist[v] return True def flow(self, s, t): return self.flow_with_limit(s, t, 2**63 - 1) def flow_with_limit(self, s, t, limit): return self.slope_with_limit(s, t, limit)[-1] def slope(self, s, t): return self.slope_with_limit(s, t, 2**63 - 1) def slope_with_limit(self, s, t, limit): flow = 0 cost = 0 prev_cost = -1 res = [(flow, cost)] self.dual = [0] * self.n while flow < limit: if not self.dual_ref(s, t): break c = limit - flow v = t while v != s: c = min(c, self.graph[self.pv[v]][self.pe[v]][2]) v = self.pv[v] v = t while v != s: to, rev, cap, _ = self.graph[self.pv[v]][self.pe[v]] self.graph[self.pv[v]][self.pe[v]][2] -= c self.graph[v][rev][2] += c v = self.pv[v] d = -self.dual[s] flow += c cost += c * d if prev_cost == d: res.pop() res.append((flow, cost)) prev_cost = cost return res mcf = MinCostFlow(N) edges = [] for _ in range(M): u, v, c, d = map(int, input().split()) edges.append((u, v, c, d)) mcf.add_edge(u - 1, v - 1, 1, c) mcf2 = mcf.flow_with_limit(0, N - 1, 2) if mcf2[0] == 2: print(mcf2[1]) exit(0) mcf = MinCostFlow(N) for u, v, c, d in edges: mcf.add_edge(u - 1, v - 1, 1, c) mcf1 = mcf.flow_with_limit(0, N - 1, 1) mcfedges = list(mcf.edges()) mcf = MinCostFlow(N) for i in range(M): fr, to, cap, flow, cost = mcfedges[i] if mcfedges[i][3]: mcf.add_edge(fr, to, cap, edges[i][-1]) else: mcf.add_edge(fr, to, cap, cost) print(mcf1[1] + mcf.flow_with_limit(0, N - 1, 1)[1])