結果
問題 | No.1301 Strange Graph Shortest Path |
ユーザー | wolgnik |
提出日時 | 2020-11-27 22:57:32 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,373 bytes |
コンパイル時間 | 249 ms |
コンパイル使用メモリ | 81,980 KB |
実行使用メモリ | 309,220 KB |
最終ジャッジ日時 | 2024-07-26 20:15:32 |
合計ジャッジ時間 | 63,425 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 40 ms
53,944 KB |
testcase_01 | AC | 40 ms
54,108 KB |
testcase_02 | WA | - |
testcase_03 | AC | 1,737 ms
277,144 KB |
testcase_04 | AC | 1,980 ms
303,440 KB |
testcase_05 | AC | 1,906 ms
303,792 KB |
testcase_06 | AC | 1,894 ms
301,052 KB |
testcase_07 | AC | 2,096 ms
303,356 KB |
testcase_08 | AC | 1,813 ms
275,300 KB |
testcase_09 | AC | 1,759 ms
293,196 KB |
testcase_10 | WA | - |
testcase_11 | AC | 1,716 ms
299,800 KB |
testcase_12 | AC | 1,959 ms
306,864 KB |
testcase_13 | AC | 1,888 ms
297,712 KB |
testcase_14 | AC | 2,211 ms
292,584 KB |
testcase_15 | AC | 1,799 ms
290,384 KB |
testcase_16 | AC | 1,893 ms
299,620 KB |
testcase_17 | AC | 1,890 ms
299,756 KB |
testcase_18 | AC | 2,040 ms
292,388 KB |
testcase_19 | AC | 1,855 ms
295,104 KB |
testcase_20 | AC | 1,748 ms
299,792 KB |
testcase_21 | AC | 2,013 ms
305,612 KB |
testcase_22 | AC | 1,730 ms
293,664 KB |
testcase_23 | AC | 1,905 ms
303,516 KB |
testcase_24 | AC | 1,945 ms
300,504 KB |
testcase_25 | AC | 2,163 ms
299,768 KB |
testcase_26 | AC | 2,104 ms
295,528 KB |
testcase_27 | AC | 1,860 ms
308,204 KB |
testcase_28 | AC | 1,868 ms
295,952 KB |
testcase_29 | WA | - |
testcase_30 | AC | 1,959 ms
302,592 KB |
testcase_31 | AC | 2,165 ms
298,496 KB |
testcase_32 | WA | - |
testcase_33 | WA | - |
testcase_34 | AC | 1,979 ms
301,912 KB |
ソースコード
import sys input = sys.stdin.readline N, M = map(int, input().split()) from heapq import heappop, heappush, heapify class MinCostFlow(): def __init__(self, n): self.n = n self.graph = [[] for _ in range(n)] self.pos = [] def add_edge(self, fr, to, cap, cost): m = len(self.pos) self.pos.append((fr, len(self.graph[fr]))) self.graph[fr].append([to, len(self.graph[to]), cap, cost]) self.graph[to].append([fr, len(self.graph[fr]) - 1, 0, -cost]) return m def get_edge(self, idx): to, rev, cap, cost = self.graph[self.pos[idx][0]][self.pos[idx][1]] rev_to, rev_rev, rev_cap, rev_cost = self.graph[to][rev] return self.pos[idx][0], to, cap + rev_cap, rev_cap, cost def edges(self): for i in range(len(self.pos)): yield self.get_edge(i) def dual_ref(self, s, t): dist = [2**63 - 1] * self.n dist[s] = 0 vis = [0] * self.n self.pv = [-1] * self.n self.pe = [-1] * self.n queue = [] heappush(queue, (0, s)) while queue: k, v = heappop(queue) if vis[v]: continue vis[v] = True if v == t: break for i in range(len(self.graph[v])): to, rev, cap, cost = self.graph[v][i] if vis[to] or cap == 0: continue cost += self.dual[v] - self.dual[to] if dist[to] - dist[v] > cost: dist[to] = dist[v] + cost self.pv[to] = v self.pe[to] = i heappush(queue, (dist[to], to)) if not vis[t]: return False for v in range(self.n): if not vis[v]: continue self.dual[v] -= dist[t] - dist[v] return True def flow(self, s, t): return self.flow_with_limit(s, t, 2**63 - 1) def flow_with_limit(self, s, t, limit): return self.slope_with_limit(s, t, limit)[-1] def slope(self, s, t): return self.slope_with_limit(s, t, 2**63 - 1) def slope_with_limit(self, s, t, limit): flow = 0 cost = 0 prev_cost = -1 res = [(flow, cost)] self.dual = [0] * self.n while flow < limit: if not self.dual_ref(s, t): break c = limit - flow v = t while v != s: c = min(c, self.graph[self.pv[v]][self.pe[v]][2]) v = self.pv[v] v = t while v != s: to, rev, cap, _ = self.graph[self.pv[v]][self.pe[v]] self.graph[self.pv[v]][self.pe[v]][2] -= c self.graph[v][rev][2] += c v = self.pv[v] d = -self.dual[s] flow += c cost += c * d if prev_cost == d: res.pop() res.append((flow, cost)) prev_cost = cost return res mcf = MinCostFlow(N) edges = [] for _ in range(M): u, v, c, d = map(int, input().split()) edges.append((u, v, c, d)) mcf.add_edge(u - 1, v - 1, 1, c) mcf.add_edge(v - 1, u - 1, 1, c) mcf2 = mcf.flow_with_limit(0, N - 1, 2) mcf = MinCostFlow(N) for u, v, c, d in edges: mcf.add_edge(u - 1, v - 1, 1, c) mcf.add_edge(v - 1, u - 1, 1, c) mcf1 = mcf.flow_with_limit(0, N - 1, 1) if mcf2[0] == 2 and mcf1[1] * 2 == mcf2[1]: print(mcf2[1]) exit(0) mcfedges = list(mcf.edges()) mcf = MinCostFlow(N) for i in range(M): x = i * 2 fr, to, cap, flow, cost = mcfedges[x] flow += mcfedges[x + 1][3] if flow: mcf.add_edge(fr, to, cap, edges[i][-1]) mcf.add_edge(to, fr, cap, edges[i][-1]) else: mcf.add_edge(fr, to, cap, cost) mcf.add_edge(to, fr, cap, cost) print(mcf1[1] + mcf.flow_with_limit(0, N - 1, 1)[1])