結果
問題 | No.1301 Strange Graph Shortest Path |
ユーザー | 👑 emthrm |
提出日時 | 2020-11-27 23:52:31 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 198 ms / 3,000 ms |
コード長 | 3,726 bytes |
コンパイル時間 | 2,614 ms |
コンパイル使用メモリ | 218,112 KB |
実行使用メモリ | 34,744 KB |
最終ジャッジ日時 | 2024-07-26 20:13:21 |
合計ジャッジ時間 | 9,535 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 155 ms
32,672 KB |
testcase_03 | AC | 126 ms
29,184 KB |
testcase_04 | AC | 197 ms
31,872 KB |
testcase_05 | AC | 126 ms
32,128 KB |
testcase_06 | AC | 168 ms
29,440 KB |
testcase_07 | AC | 159 ms
30,592 KB |
testcase_08 | AC | 126 ms
29,312 KB |
testcase_09 | AC | 165 ms
28,032 KB |
testcase_10 | AC | 125 ms
29,056 KB |
testcase_11 | AC | 175 ms
30,336 KB |
testcase_12 | AC | 176 ms
30,336 KB |
testcase_13 | AC | 153 ms
32,956 KB |
testcase_14 | AC | 158 ms
28,160 KB |
testcase_15 | AC | 158 ms
28,928 KB |
testcase_16 | AC | 197 ms
31,744 KB |
testcase_17 | AC | 166 ms
33,216 KB |
testcase_18 | AC | 148 ms
30,208 KB |
testcase_19 | AC | 179 ms
29,696 KB |
testcase_20 | AC | 182 ms
28,800 KB |
testcase_21 | AC | 166 ms
31,616 KB |
testcase_22 | AC | 186 ms
29,696 KB |
testcase_23 | AC | 161 ms
32,512 KB |
testcase_24 | AC | 185 ms
29,440 KB |
testcase_25 | AC | 192 ms
31,744 KB |
testcase_26 | AC | 163 ms
30,336 KB |
testcase_27 | AC | 172 ms
30,464 KB |
testcase_28 | AC | 135 ms
32,000 KB |
testcase_29 | AC | 198 ms
31,104 KB |
testcase_30 | AC | 183 ms
31,360 KB |
testcase_31 | AC | 187 ms
31,360 KB |
testcase_32 | AC | 2 ms
6,940 KB |
testcase_33 | AC | 80 ms
25,728 KB |
testcase_34 | AC | 183 ms
34,744 KB |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <typename T, typename U> struct PrimalDual2 { struct Edge { int dst, rev; T cap; U cost; Edge(int dst, T cap, U cost, int rev) : dst(dst), cap(cap), cost(cost), rev(rev) {} }; std::vector<std::vector<Edge>> graph; PrimalDual2(int n, const T TINF, const U UINF) : n(n), UINF(UINF), graph(n + 2), d(n + 2, 0) {} void add_edge(int src, int dst, T cap, U cost) { if (cost < 0) { d[src] -= cap; d[dst] += cap; res += cost * cap; std::swap(src, dst); cost = -cost; } graph[src].emplace_back(dst, cap, cost, graph[dst].size()); graph[dst].emplace_back(src, 0, -cost, graph[src].size() - 1); } U minimum_cost_flow() { T flow = 0; for (int i = 0; i < n; ++i) { if (d[i] > 0) { add_edge(n, i, d[i], 0); flow += d[i]; } else if (d[i] < 0) { add_edge(i, n + 1, -d[i], 0); } } std::vector<int> prev_v(n + 2, -1), prev_e(n + 2, -1); std::vector<U> potential(n + 2, 0), dist(n + 2); std::priority_queue<Pui, std::vector<Pui>, std::greater<Pui>> que; while (flow > 0) { std::fill(dist.begin(), dist.end(), UINF); dist[n] = 0; que.emplace(0, n); while (!que.empty()) { U fst; int ver; std::tie(fst, ver) = que.top(); que.pop(); if (dist[ver] < fst) continue; for (int i = 0; i < graph[ver].size(); ++i) { Edge &e = graph[ver][i]; U nx = dist[ver] + e.cost + potential[ver] - potential[e.dst]; if (e.cap > 0 && dist[e.dst] > nx) { dist[e.dst] = nx; prev_v[e.dst] = ver; prev_e[e.dst] = i; que.emplace(dist[e.dst], e.dst); } } } if (dist[n + 1] == UINF) return UINF; for (int i = 0; i < n + 2; ++i) { if (dist[i] != UINF) potential[i] += dist[i]; } T f = flow; for (int v = n + 1; v != n; v = prev_v[v]) { if (graph[prev_v[v]][prev_e[v]].cap < f) f = graph[prev_v[v]][prev_e[v]].cap; } flow -= f; res += potential[n + 1] * f; for (int v = n + 1; v != n; v = prev_v[v]) { Edge &e = graph[prev_v[v]][prev_e[v]]; e.cap -= f; graph[v][e.rev].cap += f; } } return res; } U minimum_cost_flow(int s, int t, T flow) { d[s] += flow; d[t] -= flow; return minimum_cost_flow(); } private: using Pui = std::pair<U, int>; int n; const U UINF; U res = 0; std::vector<T> d; }; int main() { int n, m; cin >> n >> m; PrimalDual2<int, ll> pd(n, INF, LINF); while (m--) { int u, v, c, d; cin >> u >> v >> c >> d; --u; --v; pd.add_edge(u, v, 1, c); pd.add_edge(v, u, 1, c); pd.add_edge(u, v, 1, d); pd.add_edge(v, u, 1, d); } cout << pd.minimum_cost_flow(0, n - 1, 2) << '\n'; return 0; }