結果
| 問題 |
No.1301 Strange Graph Shortest Path
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2020-11-27 23:52:31 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 205 ms / 3,000 ms |
| コード長 | 3,726 bytes |
| コンパイル時間 | 2,455 ms |
| コンパイル使用メモリ | 209,516 KB |
| 最終ジャッジ日時 | 2025-01-16 08:43:48 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 33 |
ソースコード
#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <typename T, typename U>
struct PrimalDual2 {
struct Edge {
int dst, rev;
T cap;
U cost;
Edge(int dst, T cap, U cost, int rev) : dst(dst), cap(cap), cost(cost), rev(rev) {}
};
std::vector<std::vector<Edge>> graph;
PrimalDual2(int n, const T TINF, const U UINF) : n(n), UINF(UINF), graph(n + 2), d(n + 2, 0) {}
void add_edge(int src, int dst, T cap, U cost) {
if (cost < 0) {
d[src] -= cap;
d[dst] += cap;
res += cost * cap;
std::swap(src, dst);
cost = -cost;
}
graph[src].emplace_back(dst, cap, cost, graph[dst].size());
graph[dst].emplace_back(src, 0, -cost, graph[src].size() - 1);
}
U minimum_cost_flow() {
T flow = 0;
for (int i = 0; i < n; ++i) {
if (d[i] > 0) {
add_edge(n, i, d[i], 0);
flow += d[i];
} else if (d[i] < 0) {
add_edge(i, n + 1, -d[i], 0);
}
}
std::vector<int> prev_v(n + 2, -1), prev_e(n + 2, -1);
std::vector<U> potential(n + 2, 0), dist(n + 2);
std::priority_queue<Pui, std::vector<Pui>, std::greater<Pui>> que;
while (flow > 0) {
std::fill(dist.begin(), dist.end(), UINF);
dist[n] = 0;
que.emplace(0, n);
while (!que.empty()) {
U fst; int ver; std::tie(fst, ver) = que.top(); que.pop();
if (dist[ver] < fst) continue;
for (int i = 0; i < graph[ver].size(); ++i) {
Edge &e = graph[ver][i];
U nx = dist[ver] + e.cost + potential[ver] - potential[e.dst];
if (e.cap > 0 && dist[e.dst] > nx) {
dist[e.dst] = nx;
prev_v[e.dst] = ver;
prev_e[e.dst] = i;
que.emplace(dist[e.dst], e.dst);
}
}
}
if (dist[n + 1] == UINF) return UINF;
for (int i = 0; i < n + 2; ++i) {
if (dist[i] != UINF) potential[i] += dist[i];
}
T f = flow;
for (int v = n + 1; v != n; v = prev_v[v]) {
if (graph[prev_v[v]][prev_e[v]].cap < f) f = graph[prev_v[v]][prev_e[v]].cap;
}
flow -= f;
res += potential[n + 1] * f;
for (int v = n + 1; v != n; v = prev_v[v]) {
Edge &e = graph[prev_v[v]][prev_e[v]];
e.cap -= f;
graph[v][e.rev].cap += f;
}
}
return res;
}
U minimum_cost_flow(int s, int t, T flow) {
d[s] += flow;
d[t] -= flow;
return minimum_cost_flow();
}
private:
using Pui = std::pair<U, int>;
int n;
const U UINF;
U res = 0;
std::vector<T> d;
};
int main() {
int n, m; cin >> n >> m;
PrimalDual2<int, ll> pd(n, INF, LINF);
while (m--) {
int u, v, c, d; cin >> u >> v >> c >> d; --u; --v;
pd.add_edge(u, v, 1, c);
pd.add_edge(v, u, 1, c);
pd.add_edge(u, v, 1, d);
pd.add_edge(v, u, 1, d);
}
cout << pd.minimum_cost_flow(0, n - 1, 2) << '\n';
return 0;
}
emthrm