結果

問題 No.1324 Approximate the Matrix
ユーザー theory_and_metheory_and_me
提出日時 2020-11-29 03:15:48
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
MLE  
実行時間 -
コード長 7,662 bytes
コンパイル時間 2,576 ms
コンパイル使用メモリ 229,880 KB
実行使用メモリ 518,324 KB
最終ジャッジ日時 2024-09-19 23:31:43
合計ジャッジ時間 6,027 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
13,752 KB
testcase_01 AC 2 ms
6,940 KB
testcase_02 AC 1 ms
6,944 KB
testcase_03 MLE -
testcase_04 -- -
testcase_05 -- -
testcase_06 -- -
testcase_07 -- -
testcase_08 -- -
testcase_09 -- -
testcase_10 -- -
testcase_11 -- -
testcase_12 -- -
testcase_13 -- -
testcase_14 -- -
testcase_15 -- -
testcase_16 -- -
testcase_17 -- -
testcase_18 -- -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
testcase_42 -- -
testcase_43 -- -
testcase_44 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
using ll = long long;

template <class Cap, class Cost> struct mcf_graph {
  public:
    std::vector<Cost> dual;

    mcf_graph() {}
    mcf_graph(int n) : _n(n), g(n) {
        dual.resize(_n, 0);
    }

    int add_edge(int from, int to, Cap cap, Cost cost) {
        assert(0 <= from && from < _n);
        assert(0 <= to && to < _n);
        int m = int(pos.size());
        pos.push_back({from, int(g[from].size())});
        g[from].push_back(_edge{to, int(g[to].size()), cap, cost});
        g[to].push_back(_edge{from, int(g[from].size()) - 1, 0, -cost});
        return m;
    }
 
    struct edge {
        int from, to;
        Cap cap, flow;
        Cost cost;
    };

    edge get_edge(int i) {
        int m = int(pos.size());
        assert(0 <= i && i < m);
        auto _e = g[pos[i].first][pos[i].second];
        auto _re = g[_e.to][_e.rev];
        return edge{
            pos[i].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost,
        };
    }
    std::vector<edge> edges() {
        int m = int(pos.size());
        std::vector<edge> result(m);
        for (int i = 0; i < m; i++) {
            result[i] = get_edge(i);
        }
        return result;
    }

    std::pair<Cap, Cost> flow(int s, int t) {
        return flow(s, t, std::numeric_limits<Cap>::max());
    }
    std::pair<Cap, Cost> flow(int s, int t, Cap flow_limit) {
        return slope(s, t, flow_limit).back();
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t) {
        return slope(s, t, std::numeric_limits<Cap>::max());
    }
    std::vector<std::pair<Cap, Cost>> slope(int s, int t, Cap flow_limit) {
        assert(0 <= s && s < _n);
        assert(0 <= t && t < _n);
        assert(s != t);
        // variants (C = maxcost):
        // -(n-1)C <= dual[s] <= dual[i] <= dual[t] = 0
        // reduced cost (= e.cost + dual[e.from] - dual[e.to]) >= 0 for all edge
        // std::vector<Cost> dual(_n, 0), dist(_n);
        std::vector<Cost> dist(_n);
        std::vector<int> pv(_n), pe(_n);
        std::vector<bool> vis(_n);

        auto dual_ref_BF = [&](){
            std::fill(dist.begin(), dist.end(),
                      std::numeric_limits<Cost>::max());
            std::fill(pv.begin(), pv.end(), -1);
            std::fill(pe.begin(), pe.end(), -1);

            dist[s] = 0;
            for(int itr=0;itr<_n-1;itr++){
                for(int v=0;v<_n;v++){
                    if(dist[v] == std::numeric_limits<Cost>::max()) continue;
                    for(int i=0;i<(int)g[v].size();i++){
                        auto e = g[v][i];
                        if(!e.cap) continue;
                        if(dist[e.to] > dist[v] + e.cost){
                            dist[e.to] = dist[v] + e.cost;
                            pv[e.to] = v;
                            pe[e.to] = i;
                        }
                    }
                }
            }

            // detect negative cycle
            for(int v=0;v<_n;v++){
                if(dist[v] == std::numeric_limits<Cost>::max()) continue;
                for(auto &e: g[v]){
                    if(!e.cap) continue;
                    assert(dist[v] + e.cost >= dist[e.to]);
                }
            }

            if(dist[t] == std::numeric_limits<Cost>::max()) return false;

            for(int v=0;v<_n;v++){
                if(dist[v] == std::numeric_limits<Cost>::max()) continue;
                dual[v] -= dist[t] - dist[v];
            }

            return true;
        };

        auto dual_ref = [&]() {
            std::fill(dist.begin(), dist.end(),
                      std::numeric_limits<Cost>::max());
            std::fill(pv.begin(), pv.end(), -1);
            std::fill(pe.begin(), pe.end(), -1);
            std::fill(vis.begin(), vis.end(), false);
            struct Q {
                Cost key;
                int to;
                bool operator<(Q r) const { return key > r.key; }
            };
            std::priority_queue<Q> que;
            dist[s] = 0;
            que.push(Q{0, s});
            while (!que.empty()) {
                int v = que.top().to;
                que.pop();
                if (vis[v]) continue;
                vis[v] = true;
                if (v == t) break;
                // dist[v] = shortest(s, v) + dual[s] - dual[v]
                // dist[v] >= 0 (all reduced cost are positive)
                // dist[v] <= (n-1)C
                for (int i = 0; i < int(g[v].size()); i++) {
                    auto e = g[v][i];
                    if (vis[e.to] || !e.cap) continue;
                    // |-dual[e.to] + dual[v]| <= (n-1)C
                    // cost <= C - -(n-1)C + 0 = nC
                    Cost cost = e.cost - dual[e.to] + dual[v];
                    if (dist[e.to] - dist[v] > cost) {
                        dist[e.to] = dist[v] + cost;
                        pv[e.to] = v;
                        pe[e.to] = i;
                        que.push(Q{dist[e.to], e.to});
                    }
                }
            }
            if (!vis[t]) {
                return false;
            }

            for (int v = 0; v < _n; v++) {
                if (!vis[v]) continue;
                // dual[v] = dual[v] - dist[t] + dist[v]
                //         = dual[v] - (shortest(s, t) + dual[s] - dual[t]) + (shortest(s, v) + dual[s] - dual[v])
                //         = - shortest(s, t) + dual[t] + shortest(s, v)
                //         = shortest(s, v) - shortest(s, t) >= 0 - (n-1)C
                dual[v] -= dist[t] - dist[v];
            }
            return true;
        };
        Cap flow = 0;
        Cost cost = 0, prev_cost = -1;
        std::vector<std::pair<Cap, Cost>> result;
        result.push_back({flow, cost});
        while (flow < flow_limit) {

            // 負辺がある場合
            if(!flow){
                if(!dual_ref_BF()) break;
            }else{
                if(!dual_ref()) break;
            }

            // 負辺がない場合
            // if(!dual_ref()) break;

            Cap c = flow_limit - flow;
            for (int v = t; v != s; v = pv[v]) {
                c = std::min(c, g[pv[v]][pe[v]].cap);
            }
            for (int v = t; v != s; v = pv[v]) {
                auto& e = g[pv[v]][pe[v]];
                e.cap -= c;
                g[v][e.rev].cap += c;
            }
            Cost d = -dual[s];
            flow += c;
            cost += c * d;
            if (prev_cost == d) {
                result.pop_back();
            }
            result.push_back({flow, cost});
            prev_cost = cost;
        }
        return result;
    }

  private:
    int _n;

    struct _edge {
        int to, rev;
        Cap cap;
        Cost cost;
    };

    std::vector<std::pair<int, int>> pos;
    std::vector<std::vector<_edge>> g;
};

int main(){

    int N, K;
    cin >> N >> K;
    vector<int> A(N), B(N);
    for(int i=0;i<N;i++) cin >> A[i];
    for(int i=0;i<N;i++) cin >> B[i];
    vector<vector<int>> P(N, vector<int>(N, 0));
    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            cin >> P[i][j];
        }
    }

    mcf_graph<int, ll> G(2*N+2);
    int s = 2*N, t = s+1;

    for(int i=0;i<N;i++){
        G.add_edge(s, i, A[i], 0);
    }

    ll S = 0;

    for(int i=0;i<N;i++){
        for(int j=0;j<N;j++){
            S += P[i][j] * P[i][j];
            for(int k=0;k<K;k++){
                G.add_edge(i, N+j, 1, 2*k+1-2*P[i][j]);
            }
        }
    }

    for(int i=0;i<N;i++){
        G.add_edge(N+i, t, B[i], 0);
    }

    cout << G.flow(s, t, K).second + S << endl;

    return 0;
}
0