結果
| 問題 |
No.1324 Approximate the Matrix
|
| コンテスト | |
| ユーザー |
theory_and_me
|
| 提出日時 | 2020-11-30 21:33:39 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
CE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 9,443 bytes |
| コンパイル時間 | 850 ms |
| コンパイル使用メモリ | 79,892 KB |
| 最終ジャッジ日時 | 2025-01-16 10:31:01 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge5 |
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
ただし、clay言語の場合は開発者のデバッグのため、公開されます。
コンパイルメッセージ
main.cpp:15:14: error: ‘function’ in namespace ‘std’ does not name a template type
15 | std::function<Cost(Flow)> F; // must be discrete convex
| ^~~~~~~~
main.cpp:7:1: note: ‘std::function’ is defined in header ‘<functional>’; did you forget to ‘#include <functional>’?
6 | #include <iostream>
+++ |+#include <functional>
7 |
main.cpp:36:36: error: ‘std::function’ has not been declared
36 | int add_edge(int from, int to, std::function<Cost(Flow)> F, Flow cap, Flow flow){
| ^~~
main.cpp:36:49: error: expected ‘,’ or ‘...’ before ‘<’ token
36 | int add_edge(int from, int to, std::function<Cost(Flow)> F, Flow cap, Flow flow){
| ^
main.cpp: In member function ‘int mccf_graph<Flow, Cost>::add_edge(int, int, int)’:
main.cpp:41:50: error: ‘F’ was not declared in this scope
41 | E.push_back(edge_with_function{from, to, F, cap, flow});
| ^
main.cpp:41:53: error: ‘cap’ was not declared in this scope
41 | E.push_back(edge_with_function{from, to, F, cap, flow});
| ^~~
main.cpp:41:58: error: ‘flow’ was not declared in this scope; did you mean ‘Flow’?
41 | E.push_back(edge_with_function{from, to, F, cap, flow});
| ^~~~
| Flow
main.cpp: In function ‘int main()’:
main.cpp:308:23: error: no matching function for call to ‘mccf_graph<long int, long int>::add_edge(int&, int, main()::<lambda(int64_t)>&, __gnu_cxx::__alloc_traits<std::allocator<int>, int>::value_type&, int)’
308 | G.add_edge(i, N+j, F, A[i], 0);
| ~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~
main.cpp:36:9: note: candidate: ‘i
ソースコード
#include <algorithm>
#include <cassert>
#include <limits>
#include <queue>
#include <vector>
#include <iostream>
template<class Flow, class Cost> struct mccf_graph{
int n;
// input edges
struct edge_with_function{
int from, to;
std::function<Cost(Flow)> F; // must be discrete convex
Flow cap, flow;
};
// edges on the residual graph
struct edge{
int to, rev, id;
bool available;
Cost cost;
bool is_rev;
};
std::vector<std::vector<edge>> g;
std::vector<edge_with_function> E;
std::vector<Cost> dual;
mccf_graph() {}
mccf_graph(int n) : n(n), g(n){
dual.resize(n, 0);
}
int add_edge(int from, int to, std::function<Cost(Flow)> F, Flow cap, Flow flow){
assert(0 <= from and from < n);
assert(0 <= to and to < n);
// assert(cap > 0);
int m = int(E.size());
E.push_back(edge_with_function{from, to, F, cap, flow});
return m;
}
Cost calc_objective(){
Cost obj = 0;
for(auto &e: E){
obj += e.F(e.flow);
}
return obj;
}
/* for debug
void print_g(){
for(int i=0;i<n;i++){
for(edge &e: g[i]){
std::cerr << "to " << e.to;
std::cerr << " rev " << e.rev;
std::cerr << " id " << e.id;
std::cerr << " avail " << (int)e.available;
std::cerr << " cost " << e.cost;
std::cerr << " r_cost " << e.cost - dual[e.to] + dual[i];
std::cerr << " is_rev " << (int)e.is_rev;
std::cerr << "\n";
}
}
std::cerr << "\n";
}
void print_E(){
for(auto &e: E){
std::cerr << "from " << e.from;
std::cerr << " to " << e.to;
std::cerr << " cap " << e.cap;
std::cerr << " flow " << e.flow;
std::cerr << "\n";
}
std::cerr << "\n";
}
for debug */
void solve_CS(std::vector<Flow> b){
// b is copied, not referenced
assert((int)b.size() == n);
std::vector<Cost> dist(n);
std::vector<int> pv(n), pe(n);
std::vector<bool> vis(n);
Flow cap_max = 0;
for(const auto &e: E) cap_max = std::max(cap_max, e.cap);
Flow delta = 1;
while(1){
if(delta * 2 > cap_max) break;
delta *= 2;
}
Flow init_delta = delta;
// construct a delta-residual graph
int m = E.size();
for(int i=0;i<m;i++){
auto &e = E[i];
// if(!e.cap) continue;
if(delta > e.cap){
g[e.from].push_back(edge{e.to, (int)g[e.to].size(), i, false, 0, false});
}else{
g[e.from].push_back(edge{e.to, (int)g[e.to].size(), i, true, e.F(delta) - e.F(0), false});
}
g[e.to].push_back(edge{e.from, (int)g[e.from].size()-1, i, false, 0, true});
}
auto check_RCO = [&](int e_id, Flow x, Flow delta)->bool{
// check edge-wise reduced cost optimality
auto &e = E[e_id];
if(x < 0 or x > e.cap) return false;
bool ok = true;
if(x + delta <= e.cap){
Cost reduced_cost = (init_delta/delta)*(e.F(x+delta) - e.F(x)) - dual[e.to] + dual[e.from];
if(reduced_cost < 0) ok = false;
}
if(x - delta >= 0){
Cost reduced_cost = (init_delta/delta)*(e.F(x-delta) - e.F(x)) - dual[e.from] + dual[e.to];
if(reduced_cost < 0) ok = false;
}
return ok;
};
auto delta_update_edge = [&](edge &e, Flow delta){
auto &e_func = E[e.id];
if(e.is_rev){
if(e_func.flow - delta < 0){
e.available = false;
e.cost = 0;
}else{
e.available = true;
e.cost = e_func.F(e_func.flow-delta) - e_func.F(e_func.flow);
e.cost *= (init_delta/delta);
}
}else{
if(e_func.flow + delta > e_func.cap){
e.available = false;
e.cost = 0;
}else{
e.available = true;
e.cost = e_func.F(e_func.flow+delta) - e_func.F(e_func.flow);
e.cost *= (init_delta/delta);
}
}
return;
};
auto saturate = [&](Flow delta){
// modify edge_with_functions
for(int i=0;i<m;i++){
if(check_RCO(i, E[i].flow+delta, delta)){
E[i].flow += delta;
b[E[i].from] -= delta;
b[E[i].to] += delta;
}
if(check_RCO(i, E[i].flow-delta, delta)){
E[i].flow -= delta;
b[E[i].from] += delta;
b[E[i].to] -= delta;
}
assert(check_RCO(i, E[i].flow, delta));
}
// modify edges
for(int i=0;i<n;i++){
for(auto &e: g[i]){
delta_update_edge(e, delta);
}
}
return;
};
auto delta_scaling_dual = [&](Flow delta){
// return deltat-sink node t
// if there is no delta-source or delta-sink node, return -1
std::fill(dist.begin(), dist.end(),
std::numeric_limits<Cost>::max());
std::fill(pv.begin(), pv.end(), -1);
std::fill(pe.begin(), pe.end(), -1);
std::fill(vis.begin(), vis.end(), false);
struct Q {
Cost key;
int to;
bool operator<(Q r) const { return key > r.key; }
};
std::priority_queue<Q> que;
for(int i=0;i<n;i++){
if(b[i]>=delta){
que.push(Q{0, i});
dist[i] = 0;
}
}
int t = -1;
while(!que.empty()){
int v = que.top().to;
que.pop();
if(vis[v]) continue;
vis[v] = true;
if(b[v] <= -delta){
t = v;
break;
}
for(int i=0;i<(int)g[v].size();i++){
auto &e = g[v][i];
if(vis[e.to] or !e.available) continue;
Cost cost = e.cost - dual[e.to] + dual[v];
if(dist[e.to] - dist[v] > cost){
dist[e.to] = dist[v] + cost;
pv[e.to] = v;
pe[e.to] = i;
que.push(Q{dist[e.to], e.to});
}
}
}
if(t == -1) return -1;
for(int v=0;v<n;v++){
if(!vis[v]) continue;
dual[v] -= dist[t] - dist[v];
}
return t;
};
auto delta_scaling_primal = [&](Flow delta, int t){
int s = -1;
for(int v=t;b[v]<delta;v=pv[v]){
auto& e = g[pv[v]][pe[v]];
auto& e_func = E[e.id];
auto& re = g[v][e.rev];
if(e.is_rev) e_func.flow -= delta;
else e_func.flow += delta;
delta_update_edge(e, delta);
delta_update_edge(re, delta);
if(b[pv[v]] >= delta) s = pv[v];
}
assert(s != -1);
b[s] -= delta;
b[t] += delta;
};
while(delta>0){
saturate(delta);
while(true){
int t = delta_scaling_dual(delta);
if(t == -1) break;
delta_scaling_primal(delta, t);
}
delta /= 2;
}
for(int i=0;i<n;i++) assert(b[i] == 0);
return;
}
};
int main(){
int N, M;
std::cin >> N >> M;
std::vector<int> A(N), B(N);
for(int i=0;i<N;i++) std::cin >> A[i];
for(int i=0;i<N;i++) std::cin >> B[i];
std::vector<std::vector<int>> T(N, std::vector<int>(N, 0));
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
std::cin >> T[i][j];
}
}
// assert
int A_sum = 0, B_sum = 0;
for(int i=0;i<N;i++){
assert(A[i] >= 0);
A_sum += A[i];
}
for(int i=0;i<N;i++){
assert(B[i] >= 0);
B_sum += B[i];
}
assert(A_sum == M);
assert(B_sum == M);
// graph construction
mccf_graph<int64_t, int64_t> G(2*N);
for(int i=0;i<N;i++){
for(int j=0;j<N;j++){
auto F = [&T, i, j](int64_t x){return (x-T[i][j])*(x-T[i][j]);};
G.add_edge(i, N+j, F, A[i], 0);
}
}
std::vector<int64_t> C(2*N);
for(int i=0;i<N;i++){
C[i] = A[i];
C[N+i] = -B[i];
}
G.solve_CS(C);
std::vector<std::vector<int>> res(N, std::vector<int>(N, 0));
for(auto &e: G.E){
res[e.from][e.to-N] = e.flow;
}
// for(int i=0;i<N;i++){
// for(int j=0;j<N;j++){
// std::cout << res[i][j] << " ";
// }
// std::cout << "\n";
// }
std::cout << G.calc_objective() << "\n";
return 0;
}
theory_and_me