結果

問題 No.1288 yuki collection
ユーザー toyuzukotoyuzuko
提出日時 2020-12-06 18:42:15
言語 PyPy3
(7.3.15)
結果
WA  
実行時間 -
コード長 3,817 bytes
コンパイル時間 224 ms
コンパイル使用メモリ 82,576 KB
実行使用メモリ 88,040 KB
最終ジャッジ日時 2024-09-17 13:10:10
合計ジャッジ時間 18,360 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 37 ms
54,872 KB
testcase_01 AC 37 ms
54,372 KB
testcase_02 AC 36 ms
55,240 KB
testcase_03 AC 63 ms
72,148 KB
testcase_04 AC 38 ms
53,880 KB
testcase_05 AC 37 ms
54,412 KB
testcase_06 AC 39 ms
55,440 KB
testcase_07 AC 38 ms
53,912 KB
testcase_08 AC 88 ms
76,572 KB
testcase_09 AC 81 ms
75,036 KB
testcase_10 AC 101 ms
76,792 KB
testcase_11 AC 66 ms
68,964 KB
testcase_12 AC 90 ms
76,572 KB
testcase_13 AC 630 ms
85,092 KB
testcase_14 AC 658 ms
84,628 KB
testcase_15 AC 545 ms
83,892 KB
testcase_16 AC 573 ms
83,652 KB
testcase_17 AC 626 ms
84,780 KB
testcase_18 WA -
testcase_19 AC 630 ms
84,748 KB
testcase_20 AC 674 ms
85,376 KB
testcase_21 AC 757 ms
86,680 KB
testcase_22 AC 780 ms
86,904 KB
testcase_23 AC 774 ms
86,424 KB
testcase_24 WA -
testcase_25 WA -
testcase_26 WA -
testcase_27 AC 455 ms
82,208 KB
testcase_28 AC 453 ms
82,460 KB
testcase_29 WA -
testcase_30 AC 159 ms
79,076 KB
testcase_31 AC 165 ms
79,032 KB
testcase_32 AC 169 ms
79,296 KB
testcase_33 AC 722 ms
87,948 KB
testcase_34 AC 943 ms
88,040 KB
testcase_35 AC 798 ms
87,076 KB
testcase_36 AC 543 ms
84,028 KB
testcase_37 AC 619 ms
85,296 KB
testcase_38 AC 357 ms
80,376 KB
testcase_39 AC 378 ms
80,632 KB
testcase_40 AC 106 ms
78,592 KB
testcase_41 AC 40 ms
54,612 KB
testcase_42 AC 40 ms
53,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

from heapq import heappop, heappush, heapify

class MinCostFlow():
    def __init__(self, n):
        self.n = n
        self.graph = [[] for _ in range(n)]
        self.pos = []

    def add_edge(self, fr, to, cap, cost):
        #assert 0 <= fr < self.n
        #assert 0 <= to < self.n
        m = len(self.pos)
        self.pos.append((fr, len(self.graph[fr])))
        self.graph[fr].append([to, len(self.graph[to]), cap, cost])
        self.graph[to].append([fr, len(self.graph[fr]) - 1, 0, -cost])
        return m

    def get_edge(self, idx):
        #assert 0 <= idx < len(self.pos)
        to, rev, cap, cost = self.graph[self.pos[idx][0]][self.pos[idx][1]]
        rev_to, rev_rev, rev_cap, rev_cost = self.graph[to][rev]
        return self.pos[idx][0], to, cap + rev_cap, rev_cap, cost

    def edges(self):
        for i in range(len(self.pos)):
            yield self.get_edge(i)

    def dual_ref(self, s, t):
        dist = [2**63 - 1] * self.n
        dist[s] = 0
        vis = [0] * self.n
        self.pv = [-1] * self.n
        self.pe = [-1] * self.n
        queue = []
        heappush(queue, (0, s))
        while queue:
            k, v = heappop(queue)
            if vis[v]: continue
            vis[v] = True
            if v == t: break
            for i in range(len(self.graph[v])):
                to, rev, cap, cost = self.graph[v][i]
                if vis[to] or cap == 0: continue
                cost += self.dual[v] - self.dual[to]
                if dist[to] - dist[v] > cost:
                    dist[to] = dist[v] + cost
                    self.pv[to] = v
                    self.pe[to] = i
                    heappush(queue, (dist[to], to))
        if not vis[t]: return False
        for v in range(self.n):
            if not vis[v]: continue
            self.dual[v] -= dist[t] - dist[v]
        return True

    def flow(self, s, t):
        return self.flow_with_limit(s, t, 2**63 - 1)

    def flow_with_limit(self, s, t, limit):
        return self.slope_with_limit(s, t, limit)[-1]

    def slope(self, s, t):
        return self.slope_with_limit(s, t, 2**63 - 1)

    def slope_with_limit(self, s, t, limit):
        #assert 0 <= s < self.n
        #assert 0 <= t < self.n
        #assert s != t
        flow = 0
        cost = 0
        prev_cost = -1
        res = [(flow, cost)]
        self.dual = [0] * self.n
        while flow < limit:
            if not self.dual_ref(s, t): break
            c = limit - flow
            v = t
            while v != s:
                c = min(c, self.graph[self.pv[v]][self.pe[v]][2])
                v = self.pv[v]
            v = t
            while v != s:
                to, rev, cap, _ = self.graph[self.pv[v]][self.pe[v]]
                self.graph[self.pv[v]][self.pe[v]][2] -= c
                self.graph[v][rev][2] += c
                v = self.pv[v]
            d = -self.dual[s]
            flow += c
            cost += c * d
            if prev_cost == d:
                res.pop()
            res.append((flow, cost))
            prev_cost = cost
        return res

N = int(input())
S = input()

V = list(map(int, input().split()))

INF = 10**18
MAX = 10**15

mcf = MinCostFlow(N + 2)

s = N
t = N + 1

arr = [0] * N

for i in range(N):
    if S[i] == 'y':
        pass
    elif S[i] == 'u':
        arr[i] = 1
    elif S[i] == 'k':
        arr[i] = 2
    else:
        arr[i] = 3

rm = [None] * 4

for i in range(N)[::-1]:
    if arr[i] == 3:
        mcf.add_edge(i, t, 1, MAX - V[i])
    if rm[arr[i]] is not None:
        mcf.add_edge(i, rm[arr[i]], INF, 0)
    if arr[i] != 3 and rm[arr[i] + 1] is not None:
        mcf.add_edge(i, rm[arr[i] + 1], 1, MAX - V[i])
    rm[arr[i]] = i

if rm[0] is not None:
    mcf.add_edge(s, rm[0], INF, 0)

flow, cost = mcf.flow(s, t)

print(MAX * flow * 4 - cost)
0