結果
| 問題 |
No.1324 Approximate the Matrix
|
| コンテスト | |
| ユーザー |
opt
|
| 提出日時 | 2020-12-08 20:42:20 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 2,303 bytes |
| コンパイル時間 | 84 ms |
| コンパイル使用メモリ | 12,928 KB |
| 実行使用メモリ | 30,240 KB |
| 最終ジャッジ日時 | 2024-09-19 23:38:05 |
| 合計ジャッジ時間 | 9,490 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 36 TLE * 6 |
ソースコード
#!/usr/local/bin/pypy
# python 想定解 O(NK)本の辺を張り,下駄をはかせる
from heapq import heappush, heappop
class MinCostFlow:
INF = 10**18
def __init__(self, N):
self.N = N
self.G = [[] for i in range(N)]
def add_edge(self, fr, to, cap, cost):
forward = [to, cap, cost, None]
backward = forward[3] = [fr, 0, -cost, forward]
self.G[fr].append(forward)
self.G[to].append(backward)
def flow(self, s, t, f):
N = self.N; G = self.G
INF = MinCostFlow.INF
res = 0
H = [0]*N
prv_v = [0]*N
prv_e = [None]*N
d0 = [INF]*N
dist = [INF]*N
while f:
dist[:] = d0
dist[s] = 0
que = [(0, s)]
while que:
c, v = heappop(que)
if dist[v] < c:
continue
r0 = dist[v] + H[v]
for e in G[v]:
w, cap, cost, _ = e
if cap > 0 and r0 + cost - H[w] < dist[w]:
dist[w] = r = r0 + cost - H[w]
prv_v[w] = v; prv_e[w] = e
heappush(que, (r, w))
if dist[t] == INF:
return None
for i in range(N):
H[i] += dist[i]
d = f; v = t
while v != s:
d = min(d, prv_e[v][1])
v = prv_v[v]
f -= d
res += d * H[t]
v = t
while v != s:
e = prv_e[v]
e[1] -= d
e[3][1] += d
v = prv_v[v]
return res
import sys
readline = sys.stdin.readline
write = sys.stdout.write
BIG = 1000
N, K = map(int, readline().split())
A = list(map(int, readline().split()))
B = list(map(int, readline().split()))
P = []
for i in range(N):
P.append(list(map(int, readline().split())))
mcf = MinCostFlow(2*N+2)
s = 2*N
t = s+1
for i in range(N):
mcf.add_edge(s, i, A[i], 0)
S = 0
for i in range(N):
for j in range(N):
S += P[i][j] * P[i][j]
for x in range(A[i]):
mcf.add_edge(i, N+j, 1, 2*(x-P[i][j])+1+BIG)
for i in range(N):
mcf.add_edge(N+i, t, B[i], 0)
print(mcf.flow(s, t, K) + S - K*BIG)
opt