結果

問題 No.1324 Approximate the Matrix
ユーザー theory_and_metheory_and_me
提出日時 2020-12-09 03:15:39
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 595 ms / 2,000 ms
コード長 4,625 bytes
コンパイル時間 167 ms
コンパイル使用メモリ 82,296 KB
実行使用メモリ 90,020 KB
最終ジャッジ日時 2024-09-19 23:39:09
合計ジャッジ時間 10,269 ms
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 40 ms
54,928 KB
testcase_01 AC 38 ms
55,492 KB
testcase_02 AC 38 ms
54,476 KB
testcase_03 AC 442 ms
89,592 KB
testcase_04 AC 462 ms
89,828 KB
testcase_05 AC 450 ms
90,020 KB
testcase_06 AC 445 ms
89,624 KB
testcase_07 AC 455 ms
89,624 KB
testcase_08 AC 154 ms
80,440 KB
testcase_09 AC 165 ms
79,896 KB
testcase_10 AC 182 ms
80,312 KB
testcase_11 AC 217 ms
82,564 KB
testcase_12 AC 151 ms
79,084 KB
testcase_13 AC 132 ms
78,560 KB
testcase_14 AC 224 ms
83,532 KB
testcase_15 AC 173 ms
80,548 KB
testcase_16 AC 109 ms
77,592 KB
testcase_17 AC 201 ms
80,668 KB
testcase_18 AC 155 ms
78,920 KB
testcase_19 AC 166 ms
78,752 KB
testcase_20 AC 132 ms
78,304 KB
testcase_21 AC 126 ms
78,312 KB
testcase_22 AC 104 ms
78,596 KB
testcase_23 AC 202 ms
79,808 KB
testcase_24 AC 262 ms
83,308 KB
testcase_25 AC 218 ms
81,232 KB
testcase_26 AC 203 ms
80,936 KB
testcase_27 AC 163 ms
78,920 KB
testcase_28 AC 36 ms
54,172 KB
testcase_29 AC 48 ms
63,688 KB
testcase_30 AC 56 ms
68,452 KB
testcase_31 AC 63 ms
69,984 KB
testcase_32 AC 41 ms
54,648 KB
testcase_33 AC 40 ms
54,256 KB
testcase_34 AC 40 ms
54,144 KB
testcase_35 AC 47 ms
63,292 KB
testcase_36 AC 39 ms
54,308 KB
testcase_37 AC 486 ms
89,468 KB
testcase_38 AC 474 ms
89,780 KB
testcase_39 AC 577 ms
89,888 KB
testcase_40 AC 454 ms
89,632 KB
testcase_41 AC 595 ms
90,004 KB
testcase_42 AC 57 ms
71,820 KB
testcase_43 AC 57 ms
72,100 KB
testcase_44 AC 59 ms
71,440 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#!/usr/local/bin/pypy
# python 想定解 O(NK)本の辺を張り,下駄をはかせる ライブラリが速い
import heapq

class mcf_graph:
 
 
    def __init__(self, n):
        self.n = n
        self.pos = []
        self.g = [[] for _ in range(n)]
 
 
    def add_edge(self, from_, to, cap, cost):
        # assert 0 <= from_ < self.n
        # assert 0 <= to < self.n
        m = len(self.pos)
        self.pos.append((from_, len(self.g[from_])))
        self.g[from_].append(self.__class__._edge(to, len(self.g[to]), cap, cost))
        self.g[to].append(self.__class__._edge(from_, len(self.g[from_]) - 1, 0, -cost))
        return m
 
 
    class edge:
        def __init__(self, from_, to, cap, flow, cost):
            self.from_ = from_
            self.to = to
            self.cap = cap
            self.flow = flow
            self.cost = cost
 
 
    def get_edge(self, i):
        _e = self.g[self.pos[i][0]][self.pos[i][1]]
        _re = self.g[_e.to][_e.rev]
        return self.__class__.edge(self.pos[i][0], _e.to, _e.cap + _re.cap, _re.cap, _e.cost)
 
 
    def edges(self):
        ret = []
        for i in range(len(self.pos)):
            _e = self.g[self.pos[i][0]][self.pos[i][1]]
            _re = self.g[_e.to][_e.rev]
            ret.append(self.__class__.edge(self.pos[i][0], _e.to, _e.cap + _re.cap, _re.cap, _e.cost))
        return ret
 
 
    def _dual_ref(self, s, t):
        self.dist = [float('inf')] * self.n
        self.pv = [-1] * self.n
        self.pe = [-1] * self.n
        self.vis = [False] * self.n
 
        que = [(0, s)]
        self.dist[s] = 0
        while que:
            _, v = heapq.heappop(que)
            if self.vis[v]:
                continue
            self.vis[v] = True
            if v == t:
                break
            for i in range(len(self.g[v])):
                e = self.g[v][i]
                if self.vis[e.to] or e.cap == 0:
                    continue
                cost = e.cost - self.dual[e.to] + self.dual[v]
                if self.dist[e.to] > self.dist[v] + cost:
                    self.dist[e.to] = self.dist[v] + cost
                    self.pv[e.to] = v
                    self.pe[e.to] = i
                    heapq.heappush(que, (self.dist[e.to], e.to))
        if not self.vis[t]:
            return False
 
        for v in range(self.n):
            if not self.vis[v]:
                continue
            self.dual[v] -= self.dist[t] - self.dist[v]
        
        return True
 
 
    def slope(self, s, t, flow_limit=float('inf')):
        # assert 0 <= s < self.n
        # assert 0 <= t < self.n
        # assert s != t
        
        self.dual = [0] * self.n
        self.dist = [float('inf')] * self.n
        self.pv = [-1] * self.n
        self.pe = [-1] * self.n
        self.vis = [False] * self.n
 
        flow = 0
        cost = 0
        prev_cost = -1
        result = [(flow, cost)]
        while flow < flow_limit:
            if not self._dual_ref(s, t):
                break
            c = flow_limit - flow
            v = t
            while v != s:
                c = min(c, self.g[self.pv[v]][self.pe[v]].cap)
                v = self.pv[v]
            v = t
            while v != s:
                e = self.g[self.pv[v]][self.pe[v]]
                e.cap -= c
                self.g[v][e.rev].cap += c
                v = self.pv[v]
            d = -self.dual[s]
            flow += c
            cost += c * d
            if prev_cost == d:
                result.pop()
            result.append((flow, cost))
            prev_cost = cost
        return result
 
 
    def flow(self, s, t, flow_limit=float('inf')):
        return self.slope(s, t, flow_limit)[-1]
 
    
    class _edge:
        def __init__(self, to, rev, cap, cost):
            self.to = to
            self.rev = rev
            self.cap = cap
            self.cost = cost

import sys
readline = sys.stdin.readline
write = sys.stdout.write

if __name__ == '__main__':
    BIG = 400
    N, K = map(int, readline().split())
    A = list(map(int, readline().split()))
    B = list(map(int, readline().split()))
    P = []
    for i in range(N):
        P.append(list(map(int, readline().split())))

    mcf = mcf_graph(2*N+2)
    s = 2*N
    t = s+1

    for i in range(N):
        mcf.add_edge(s, i, A[i], 0)

    S = 0

    for i in range(N):
        for j in range(N):
            S += P[i][j] * P[i][j]
            for x in range(A[i]):
                mcf.add_edge(i, N+j, 1, 2*(x-P[i][j])+1+BIG)

    for i in range(N):
        mcf.add_edge(N+i, t, B[i], 0)

    print(mcf.flow(s, t, K)[1] + S - K*BIG)
0