結果
| 問題 | No.1316 Maximum Minimum Spanning Tree |
| コンテスト | |
| ユーザー |
hitonanode
|
| 提出日時 | 2020-12-12 21:29:41 |
| 言語 | C++17(clang) (17.0.6 + boost 1.89.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 12,744 bytes |
| 記録 | |
| コンパイル時間 | 2,160 ms |
| コンパイル使用メモリ | 143,672 KB |
| 実行使用メモリ | 6,948 KB |
| 最終ジャッジ日時 | 2024-09-19 22:22:20 |
| 合計ジャッジ時間 | 146,411 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 4 |
| other | AC * 59 WA * 19 |
コンパイルメッセージ
main.cpp:403:25: warning: unqualified call to 'std::move' [-Wunqualified-std-cast-call]
403 | depth = move(depth_);
| ^
| std::
main.cpp:404:26: warning: unqualified call to 'std::move' [-Wunqualified-std-cast-call]
404 | parent = move(parent_);
| ^
| std::
main.cpp:405:24: warning: unqualified call to 'std::move' [-Wunqualified-std-cast-call]
405 | edge = move(edge_);
| ^
| std::
3 warnings generated.
ソースコード
// https://yukicoder.me/submissions/592136 改変 山登り法
// #pragma GCC optimize("Ofast")
// #pragma GCC optimize("unroll-loops")
#include <algorithm>
#include <array>
#include <cassert>
#include <chrono>
#include <iostream>
#include <numeric>
#include <queue>
#include <tuple>
#include <vector>
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// MinCostFlow by https://github.com/yosupo06/library-checker-problems/blob/master/graph/min_cost_b_flow/sol/ssp.cpp
// Copyright 2020 yosupo06/library-checker-problems
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
enum Objective {
MINIMIZE = 1,
MAXIMIZE = -1,
};
enum class Status {
OPTIMAL,
INFEASIBLE,
};
template <class Flow, class Cost, Objective objective = Objective::MINIMIZE>
class MinCostFlow {
using V_id = uint32_t;
using E_id = uint32_t;
class Edge {
friend class MinCostFlow;
V_id src, dst;
Flow flow, cap;
Cost cost;
E_id rev;
public:
Edge() = default;
Edge(const V_id src, const V_id dst, const Flow cap, const Cost cost,
const E_id rev)
: src(src), dst(dst), flow(0), cap(cap), cost(cost), rev(rev) {}
[[nodiscard]] Flow residual_cap() const { return cap - flow; }
};
public:
class EdgePtr {
friend class MinCostFlow;
const MinCostFlow *instance;
V_id v;
E_id e;
EdgePtr(const MinCostFlow * const instance, const V_id v, const E_id e)
: instance(instance), v(v), e(e) {}
[[nodiscard]] const Edge &edge() const { return instance->g[v][e]; }
[[nodiscard]] const Edge &rev() const {
const Edge &e = edge();
return instance->g[e.dst][e.rev];
}
public:
EdgePtr() = default;
[[nodiscard]] V_id src() const { return v; }
[[nodiscard]] V_id dst() const { return edge().dst; }
[[nodiscard]] Flow flow() const { return edge().flow; }
[[nodiscard]] Flow lower() const { return -rev().cap; }
[[nodiscard]] Flow upper() const { return edge().cap; }
[[nodiscard]] Cost cost() const { return edge().cost; }
[[nodiscard]] Cost gain() const { return -edge().cost; }
};
private:
V_id n;
std::vector<std::vector<Edge>> g;
std::vector<Flow> b;
public:
MinCostFlow() : n(0) {}
V_id add_vertex() {
++n;
g.resize(n);
b.resize(n);
return n-1;
}
std::vector<V_id> add_vertices(const size_t size) {
std::vector<V_id> ret(size);
std::iota(std::begin(ret), std::end(ret), n);
n += size;
g.resize(n);
b.resize(n);
return ret;
}
EdgePtr add_edge(const V_id src, const V_id dst, const Flow lower,
const Flow upper, const Cost cost) {
const E_id e = g[src].size(), re = src == dst ? e + 1 : g[dst].size();
assert(lower <= upper);
g[src].emplace_back(Edge{src, dst, upper, cost * objective, re});
g[dst].emplace_back(Edge{dst, src, -lower, -cost * objective, e});
return EdgePtr{this, src, e};
}
void add_supply(const V_id v, const Flow amount) { b[v] += amount; }
void add_demand(const V_id v, const Flow amount) { b[v] -= amount; }
private:
// Variables used in calculation
const Cost unreachable = std::numeric_limits<Cost>::max();
Cost farthest;
std::vector<Cost> potential;
std::vector<Cost> dist;
std::vector<Edge *> parent; // out-forrest.
std::priority_queue<std::pair<Cost, int>, std::vector<std::pair<Cost, int>>,
std::greater<>>
pq; // should be empty outside of dual()
std::vector<V_id> excess_vs, deficit_vs;
Edge &rev(const Edge &e) { return g[e.dst][e.rev]; }
void push(Edge &e, const Flow amount) {
e.flow += amount;
g[e.dst][e.rev].flow -= amount;
}
Cost residual_cost(const V_id src, const V_id dst, const Edge &e) {
return e.cost + potential[src] - potential[dst];
}
bool dual(const Flow delta) {
dist.assign(n, unreachable);
parent.assign(n, nullptr);
excess_vs.erase(std::remove_if(std::begin(excess_vs), std::end(excess_vs),
[&](const V_id v) { return b[v] < delta; }),
std::end(excess_vs));
deficit_vs.erase(std::remove_if(std::begin(deficit_vs),
std::end(deficit_vs),
[&](const V_id v) { return b[v] > -delta; }),
std::end(deficit_vs));
for (const auto v : excess_vs) pq.emplace(dist[v] = 0, v);
farthest = 0;
std::size_t deficit_count = 0;
while (!pq.empty()) {
Cost d;
std::size_t u;
std::tie(d, u) = pq.top();
// const auto [d, u] = pq.top();
pq.pop();
if (dist[u] < d) continue;
farthest = d;
if (b[u] <= -delta) ++deficit_count;
if (deficit_count >= deficit_vs.size()) break;
for (auto &e : g[u]) {
if (e.residual_cap() < delta) continue;
const auto v = e.dst;
const auto new_dist = d + residual_cost(u, v, e);
if (new_dist >= dist[v]) continue;
pq.emplace(dist[v] = new_dist, v);
parent[v] = &e;
}
}
pq = decltype(pq)(); // pq.clear() doesn't exist.
for (V_id v = 0; v < n; ++v) {
potential[v] += std::min(dist[v], farthest);
}
return deficit_count > 0;
}
void primal(const Flow delta) {
for (const auto t : deficit_vs) {
if (dist[t] > farthest) continue;
Flow f = -b[t];
V_id v;
for (v = t; parent[v] != nullptr; v = parent[v]->src) {
f = std::min(f, parent[v]->residual_cap());
}
f = std::min(f, b[v]);
f -= f % delta;
if (f <= 0) continue;
for (v = t; parent[v] != nullptr;) {
auto &e = *parent[v];
push(e, f);
int u = parent[v]->src;
if (e.residual_cap() <= 0) parent[v] = nullptr;
v = u;
}
b[t] += f;
b[v] -= f;
}
}
void saturate_negative(const Flow delta) {
for (auto &es : g) for (auto &e : es) {
Flow rcap = e.residual_cap();
rcap -= rcap % delta;
const Cost rcost = residual_cost(e.src, e.dst, e);
if (rcost < 0 || rcap < 0) {
push(e, rcap);
b[e.src] -= rcap;
b[e.dst] += rcap;
}
}
for (V_id v = 0; v < n; ++v) if (b[v] != 0) {
(b[v] > 0 ? excess_vs : deficit_vs).emplace_back(v);
}
}
public:
std::pair<Status, Cost> solve() {
potential.resize(n);
saturate_negative(1);
while (dual(1)) primal(1);
Cost value = 0;
for (const auto &es : g) for (const auto &e : es) {
value += e.flow * e.cost;
}
value /= 2;
if (excess_vs.empty() && deficit_vs.empty()) {
return { Status::OPTIMAL, value / objective };
} else {
return { Status::INFEASIBLE, value / objective };
}
}
std::vector<Cost> get_potential() {
return potential;
}
template<class T>
T get_result_value() {
T value = 0;
for (const auto &es : g) for (const auto &e : es) {
value += (T)(e.flow) * (T)(e.cost);
}
value /= (T)2;
return value;
}
};
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// MinCostFlow END
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
using namespace std;
constexpr long long INFll = (1ll << 60) - 1;
int n, m, k;
vector<array<int, 4>> E;
vector<int> depth, parent, edge;
vector<int> depth_, parent_, edge_;
void build(const vector<int> &v) {
depth.assign(n, 0);
parent.assign(n, 0);
edge.assign(n, 0);
// depth[0] = 0;
vector<vector<pair<int, int>>> g(n);
for(int i : v){
int a = E[i][0], b = E[i][1];
g[a].emplace_back(b, i);
g[b].emplace_back(a, i);
}
auto dfs = [&](int from, int at, auto dfs) -> void {
const int d2 = depth[at] + 1;
for(const auto& [to, id] : g[at]) if(to != from){
depth[to] = d2;
parent[to] = at;
edge[to] = id;
dfs(at, to, dfs);
}
};
dfs(-1, 0, dfs);
}
vector<int> exchangable_edges(int e){
vector<int> ans;
int a = E[e][0], b = E[e][1];
while(a != b){
if(depth[a] < depth[b]) swap(a, b);
ans.push_back(edge[a]);
a = parent[a];
}
return ans;
}
int64_t flow_us;
// 「G の最小全域木として vl が採用されうる」という条件の下で x を動かしたときの最大値を求める.
long long subsolve(const vector<int>& vl, const vector<int>& vr){
long long res = 0;
for (auto i : vl) res += E[i][2];
res *= k;
build(vl);
MinCostFlow<long long, long long> mcf;
const auto vs = mcf.add_vertices(m + 2);
int s = m, t = m + 1;
const long long BIG = 1e10;
for (auto j : vr) {
// vl に含まれない辺 j を追加したとき,代わりに取り除ける辺 i を列挙
for (auto i : exchangable_edges(j)) mcf.add_edge(i, j, 0, BIG, E[j][2] - E[i][2]);
}
for (auto i : vl) mcf.add_edge(s, i, max(k - E[i][3], 0), BIG, 0);
for (auto j : vr) mcf.add_edge(j, t, 0, E[j][3], 0);
mcf.add_edge(t, s, 0, BIG, 0);
auto START = std::chrono::system_clock::now();
auto [status, f] = mcf.solve();
flow_us += std::chrono::duration_cast<std::chrono::microseconds>(std::chrono::system_clock::now() - START).count();
if (status == Status::INFEASIBLE) return INFll;
res += f;
return res;
}
struct UnionFind{
vector<int> data;
UnionFind(int n): data(n, -1){}
bool unite(int a, int b){
a = root(a); b = root(b);
if(a == b) return 0;
if(data[a] > data[b]) swap(a, b);
data[a] += data[b];
data[b] = a;
return 1;
}
bool find(int a, int b){ return root(a) == root(b); }
int root(int a){ return data[a] < 0 ? a : data[a] = root(data[a]); }
int size(int a){ return -data[root(a)]; }
int operator[](int a){ return root(a); }
};
struct Xorshift64{
using result_type = uint32_t;
static constexpr result_type min(){ return 0; }
static constexpr result_type max(){ return -1; }
uint64_t x = 1;
result_type operator()(){
x ^= (x << 13);
x ^= (x >> 7);
x ^= (x << 17);
return static_cast<uint32_t>(x);
}
}rnd;
int main(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
auto start = chrono::system_clock::now();
cin >> n >> m >> k;
E.resize(m);
for (auto& [a, b, c, d] : E){
cin >> a >> b >> c >> d;
a--; b--;
}
sort(E.begin(), E.end(), [](const auto& a, const auto& b){ return a[2] < b[2]; });
UnionFind uf(n);
vector<int> vl, vr;
for (int i = 0; i < m; i++) {
int a = E[i][0], b = E[i][1];
if(uf.unite(a, b)) vl.push_back(i);
else vr.push_back(i);
}
long long ans = subsolve(vl, vr);
int nbupd = 0, nb_loop = 0;
if(vr.size()){
while (chrono::duration_cast<chrono::milliseconds>(chrono::system_clock::now() - start).count() < 1950) {
nb_loop++;
auto p = vr.begin() + rnd() % vr.size();
auto v = exchangable_edges(*p);
auto q = find(vl.begin(), vl.end(), v[rnd() % v.size()]);
iter_swap(p, q);
swap(depth, depth_);
swap(parent, parent_);
swap(edge, edge_);
const long long ans2 = subsolve(vl, vr);
if (ans < ans2) nbupd++;
ans = max(ans, ans2);
if(ans != ans2){
iter_swap(p, q);
depth = move(depth_);
parent = move(parent_);
edge = move(edge_);
}
}
}
cerr << nb_loop << ' ' << nbupd << ' ' << flow_us / 1000 << '\n';
if (ans == INFll) ans = -1;
cout << ans << '\n';
}
hitonanode