結果

問題 No.1320 Two Type Min Cost Cycle
ユーザー 👑 emthrmemthrm
提出日時 2020-12-19 05:00:54
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 6,622 bytes
コンパイル時間 2,934 ms
コンパイル使用メモリ 237,172 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-09-21 10:01:11
合計ジャッジ時間 6,326 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 7 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 3 ms
5,376 KB
testcase_08 AC 87 ms
5,376 KB
testcase_09 AC 100 ms
5,376 KB
testcase_10 AC 2 ms
5,376 KB
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 AC 81 ms
5,376 KB
testcase_15 AC 3 ms
5,376 KB
testcase_16 AC 8 ms
5,376 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 2 ms
5,376 KB
testcase_19 AC 37 ms
5,376 KB
testcase_20 AC 23 ms
5,376 KB
testcase_21 WA -
testcase_22 AC 2 ms
5,376 KB
testcase_23 AC 2 ms
5,376 KB
testcase_24 AC 2 ms
5,376 KB
testcase_25 AC 2 ms
5,376 KB
testcase_26 AC 2 ms
5,376 KB
testcase_27 AC 2 ms
5,376 KB
testcase_28 AC 65 ms
5,376 KB
testcase_29 AC 37 ms
5,376 KB
testcase_30 AC 2 ms
5,376 KB
testcase_31 AC 7 ms
5,376 KB
testcase_32 AC 2 ms
5,376 KB
testcase_33 WA -
testcase_34 WA -
testcase_35 AC 3 ms
5,376 KB
testcase_36 AC 3 ms
5,376 KB
testcase_37 AC 3 ms
5,376 KB
testcase_38 AC 8 ms
5,376 KB
testcase_39 AC 3 ms
5,376 KB
testcase_40 AC 2 ms
5,376 KB
testcase_41 AC 2 ms
5,376 KB
testcase_42 AC 2 ms
5,376 KB
testcase_43 AC 3 ms
5,376 KB
testcase_44 AC 2 ms
5,376 KB
testcase_45 AC 97 ms
5,376 KB
testcase_46 AC 6 ms
5,376 KB
testcase_47 AC 73 ms
5,376 KB
testcase_48 AC 60 ms
5,376 KB
testcase_49 AC 5 ms
5,376 KB
testcase_50 AC 2 ms
5,376 KB
testcase_51 WA -
testcase_52 WA -
testcase_53 AC 8 ms
5,376 KB
testcase_54 AC 67 ms
5,376 KB
testcase_55 AC 67 ms
5,376 KB
testcase_56 AC 67 ms
5,376 KB
testcase_57 WA -
testcase_58 WA -
testcase_59 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 1000000007;
// constexpr int MOD = 998244353;
constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <typename CostType>
struct Edge {
  int src, dst; CostType cost;
  Edge(int src, int dst, CostType cost = 0) : src(src), dst(dst), cost(cost) {}
  inline bool operator<(const Edge &x) const {
    return cost != x.cost ? cost < x.cost : dst != x.dst ? dst < x.dst : src < x.src;
  }
  inline bool operator<=(const Edge &x) const { return !(x < *this); }
  inline bool operator>(const Edge &x) const { return x < *this; }
  inline bool operator>=(const Edge &x) const { return !(*this < x); }
};

template <typename CostType>
CostType girth_in_directed_graph(const std::vector<std::vector<Edge<CostType>>> &graph) {
  int n = graph.size();
  CostType res = -1;
  std::vector<CostType> dist(n);
  std::priority_queue<Edge<CostType>, std::vector<Edge<CostType>>, std::greater<Edge<CostType>>> que;
  for (int root = 0; root < n; ++root) {
    std::fill(dist.begin(), dist.end(), -1);
    dist[root] = 0;
    for (const Edge<CostType> &e : graph[root]) {
      if (e.dst == root) {
        if (res == -1 || e.cost < res) res = e.cost;
      } else {
        que.emplace(e);
      }
    }
    while (!que.empty()) {
      Edge<CostType> edge = que.top(); que.pop();
      if (dist[edge.dst] != -1) {
        if (edge.dst == root && (res == -1 || dist[edge.src] + edge.cost < res)) res = dist[edge.src] + edge.cost;
        continue;
      }
      dist[edge.dst] = dist[edge.src] + edge.cost;
      for (const Edge<CostType> &e : graph[edge.dst]) {
        if (dist[e.dst] != -1) {
          if (e.dst == root && (res == -1 || dist[edge.dst] + e.cost < res)) res = dist[edge.dst] + e.cost;
        } else {
          que.emplace(e);
        }
      }
    }
  }
  return res;
}

template <typename CostType>
struct LCADoubling {
  std::vector<int> depth;
  std::vector<CostType> dist;

  LCADoubling(const std::vector<std::vector<Edge<CostType>>> &graph) : graph(graph) {
    n = graph.size();
    depth.resize(n);
    dist.resize(n);
    while ((1 << table_h) <= n) ++table_h;
    parent.resize(table_h, std::vector<int>(n));
  }

  void build(int root = 0) {
    is_built = true;
    dfs(-1, root, 0, 0);
    for (int i = 0; i + 1 < table_h; ++i) for (int ver = 0; ver < n; ++ver) {
      parent[i + 1][ver] = parent[i][ver] == -1 ? -1 : parent[i][parent[i][ver]];
    }
  }

  int query(int u, int v) const {
    assert(is_built);
    if (depth[u] > depth[v]) std::swap(u, v);
    for (int i = 0; i < table_h; ++i) {
      if ((depth[v] - depth[u]) >> i & 1) v = parent[i][v];
    }
    if (u == v) return u;
    for (int i = table_h - 1; i >= 0; --i) {
      if (parent[i][u] != parent[i][v]) {
        u = parent[i][u];
        v = parent[i][v];
      }
    }
    return parent[0][u];
  }

  CostType distance(int u, int v) const {
    assert(is_built);
    return dist[u] + dist[v] - dist[query(u, v)] * 2;
  }

private:
  bool is_built = false;
  int n, table_h = 1;
  std::vector<std::vector<Edge<CostType>>> graph;
  std::vector<std::vector<int>> parent;

  void dfs(int par, int ver, int now_depth, CostType now_dist) {
    depth[ver] = now_depth;
    dist[ver] = now_dist;
    parent[0][ver] = par;
    for (const Edge<CostType> &e : graph[ver]) {
      if (e.dst != par) dfs(ver, e.dst, now_depth + 1, now_dist + e.cost);
    }
  }
};

template <typename CostType>
CostType girth_in_undirected_graph(int n, const std::vector<Edge<CostType>> &edges) {
  int m = edges.size();
  std::vector<std::vector<int>> graph(n);
  for (int i = 0; i < m; ++i) {
    graph[edges[i].src].emplace_back(i);
    graph[edges[i].dst].emplace_back(i);
  }
  std::vector<bool> used(m, false), visited(n, false);
  using P = std::pair<int, int>;
  std::priority_queue<P, std::vector<P>, std::function<bool(const P&, const P&)>> que(
    [&](const P &a, const P &b) {
      const Edge<CostType> &a_edge = edges[a.first], &b_edge = edges[b.first];
      return a_edge.cost != b_edge.cost ? a_edge.cost > b_edge.cost : a_edge.dst != b_edge.dst ? a_edge.dst > b_edge.dst : a_edge.src > b_edge.src;
    }
  );
  CostType res = -1;
  for (int root = 0; root < n; ++root) {
    std::fill(used.begin(), used.end(), false);
    std::fill(visited.begin(), visited.end(), false);
    visited[root] = true;
    for (int id : graph[root]) {
      int dst = edges[id].src == root ? edges[id].dst : edges[id].src;
      if (dst != root) que.emplace(id, dst);
    }
    std::vector<std::vector<Edge<CostType>>> tree(n);
    while (!que.empty()) {
      int id, dst; std::tie(id, dst) = que.top(); que.pop();
      if (visited[dst]) continue;
      int src = edges[id].dst == dst ? edges[id].src : edges[id].dst;
      used[id] = visited[dst] = true;
      tree[src].emplace_back(src, dst, edges[id].cost);
      tree[dst].emplace_back(dst, src, edges[id].cost);
      for (int e : graph[dst]) {
        int nx = edges[e].src == dst ? edges[e].dst : edges[e].src;
        if (visited[nx]) que.emplace(e, nx);
      }
    }
    LCADoubling<CostType> lca(tree);
    lca.build(root);
    for (int i = 0; i < m; ++i) {
      if (!used[i] && visited[edges[i].src] && visited[edges[i].dst]) {
        CostType loop = lca.distance(edges[i].src, edges[i].dst) + edges[i].cost;
        if (res == -1 || loop < res) res = loop;
      }
    }
  }
  return res;
}

int main() {
  int t, n, m; cin >> t >> n >> m;
  if (t == 0) {
    vector<Edge<ll>> edges;
    while (m--) {
      int u, v, w; cin >> u >> v >> w; --u; --v;
      edges.emplace_back(u, v, w);
    }
    cout << girth_in_undirected_graph(n, edges) << '\n';
  } else if (t == 1) {
    vector<vector<Edge<ll>>> graph(n);
    while (m--) {
      int u, v, w; cin >> u >> v >> w; --u; --v;
      graph[u].emplace_back(u, v, w);
    }
    cout << girth_in_directed_graph(graph) << '\n';
  }
  return 0;
}
0