結果
| 問題 |
No.8030 ミラー・ラビン素数判定法のテスト
|
| ユーザー |
|
| 提出日時 | 2021-01-02 09:18:08 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 48 ms / 9,973 ms |
| コード長 | 6,908 bytes |
| コンパイル時間 | 1,564 ms |
| コンパイル使用メモリ | 168,448 KB |
| 実行使用メモリ | 5,248 KB |
| 最終ジャッジ日時 | 2024-11-16 23:36:22 |
| 合計ジャッジ時間 | 2,392 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 10 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using Int8 = int8_t;
using Int16 = int16_t;
using Int32 = int32_t;
using Int64 = int64_t;
using Int128 = __int128_t;
using Word8 = uint8_t;
using Word16 = uint16_t;
using Word32 = uint32_t;
using Word64 = uint64_t;
using Word128 = __uint128_t;
using Int = int_fast64_t;
using Word = uint_fast64_t;
using F32 = float;
using F64 = double;
using F80 = long double;
using VS = vector<string>;
using VVS = vector<vector<string>>;
using VB = vector<bool>;
using VVB = vector<vector<bool>>;
using VI = vector<Int>;
using VW = vector<Word>;
using VVI = vector<vector<Int>>;
using VVW = vector<vector<Word>>;
using PII = pair<Int,Int>;
using PWW = pair<Word,Word>;
using VPII = vector<pair<Int,Int>>;
using VPWW = vector<pair<Word,Word>>;
#define LOOP(n) for(Int _ipiewnsjiw=0; _ipiewnsjiw<(n); _ipiewnsjiw++)
#define REP(i,n) for(Int i=0, i##_len=(n); i<i##_len; ++i)
#define RANGE(i,a,b) for(Int i=(a), i##_len(b); i<=i##_len; ++i)
#define SZ(obj) ((Int)(obj).size())
#define UNIQUE(obj) (obj).erase(unique((obj).begin(),(obj).end()),(obj).end())
#define ALL(obj) (obj).begin(),(obj).end()
#define RALL(obj) (obj).rbegin(),(obj).rend()
template<typename word, typename dword, typename sword>
struct UnsafeMod {
UnsafeMod(): x(0) {}
UnsafeMod(word _x): x(init(_x)) {}
bool operator == (const UnsafeMod& rhs) const { return x == rhs.x; }
bool operator != (const UnsafeMod& rhs) const { return x != rhs.x; }
UnsafeMod& operator += (const UnsafeMod& rhs) { if ((x += rhs.x) >= mod) x -= mod; return *this; }
UnsafeMod& operator -= (const UnsafeMod& rhs) { if (sword(x -= rhs.x) < 0) x += mod; return *this; }
UnsafeMod& operator *= (const UnsafeMod& rhs) { x = reduce(dword(x) * rhs.x); return *this; }
UnsafeMod operator + (const UnsafeMod &rhs) const { return UnsafeMod(*this) += rhs; }
UnsafeMod operator - (const UnsafeMod &rhs) const { return UnsafeMod(*this) -= rhs; }
UnsafeMod operator * (const UnsafeMod &rhs) const { return UnsafeMod(*this) *= rhs; }
UnsafeMod pow(Word64 e) const { UnsafeMod ret(1); for (UnsafeMod base = *this; e; e >>= 1, base *= base) if (e & 1) ret *= base; return ret; }
word get() const { return reduce(x); }
static constexpr int word_bits = sizeof(word) * 8;
static word modulus() { return mod; }
static word init(word w) { return reduce(dword(w) * r2); }
static void set_mod(word m) { mod = m; inv = mul_inv(mod); r2 = -dword(mod) % mod; }
static word reduce(dword x) { word y = word(x >> word_bits) - word((dword(word(x) * inv) * mod) >> word_bits); return sword(y) < 0 ? y + mod : y; }
static word mul_inv(word n, int e = 6, word x = 1) { return !e ? x : mul_inv(n, e - 1, x * (2 - x * n)); }
static word mod, inv, r2;
word x;
};
using UnsafeMod64 = UnsafeMod<Word64, Word128, Int64>;
using UnsafeMod32 = UnsafeMod<Word32, Word64, int>;
template <> Word64 UnsafeMod64::mod = 0;
template <> Word64 UnsafeMod64::inv = 0;
template <> Word64 UnsafeMod64::r2 = 0;
template <> Word32 UnsafeMod32::mod = 0;
template <> Word32 UnsafeMod32::inv = 0;
template <> Word32 UnsafeMod32::r2 = 0;
template<typename word, typename dword, typename sword>
struct Mod {
Mod() : x(0) {}
Mod(word _x) : x(init(_x)) {}
Mod& operator += (const Mod& rhs) { word hi = (x >> shift) + (rhs.x >> shift) - mod; if (sword(hi) < 0) hi += mod; x = hi << shift | ((x + rhs.x) & mask); return *this; }
Mod& operator -= (const Mod& rhs) { word hi = (x >> shift) - (rhs.x >> shift); if (sword(hi) < 0) hi += mod; x = hi << shift | ((x - rhs.x) & mask); return *this; }
Mod& operator *= (const Mod& rhs) { x = reduce(x, rhs.x); return *this; }
Mod operator + (const Mod& rhs) const { return Mod(*this) += rhs; }
Mod operator - (const Mod& rhs) const { return Mod(*this) -= rhs; }
Mod operator * (const Mod& rhs) const { return Mod(*this) *= rhs; }
word get() const { word ret = reduce(x, one); word r1 = ret >> shift; return mod * (((ret - r1) * inv) & mask) + r1; }
Mod pow(Word64 e) const { Mod ret = Mod(1); for (Mod base = *this; e; e >>= 1, base *= base) { if (e & 1) ret *= base; } return ret; }
static constexpr int word_bits = sizeof(word) * 8;
static void set_mod(word m) { shift = __builtin_ctzll(m); mask = (word(1) << shift) - 1; mod = m >> shift; inv = mul_inv(mod); assert(mod * inv == 1); r2 = -dword(mod) % mod; one = word(1) << shift | 1; }
static word modulus() { return mod << shift; }
static word init(word x) { return reduce_odd(dword(x) * r2) << shift | (x & mask); }
static word reduce_odd(dword x) { word y = word(x >> word_bits) - word((dword(word(x) * inv) * mod) >> word_bits); return sword(y) < 0 ? y + mod : y; }
static word reduce(word x0, word x1) { word y = reduce_odd(dword(x0 >> shift) * (x1 >> shift)); return y << shift | ((x0 * x1) & mask); }
static word mul_inv(word n, int e = 6, word x = 1) { return !e ? x : mul_inv(n, e - 1, x * (2 - x * n)); }
static word mod, inv, r2, mask, one;
static int shift;
word x;
};
using Mod64 = Mod<Word64, Word128, Int64>;
using Mod32 = Mod<Word32, Word64, int>;
template <> Word64 Mod64::mod = 0;
template <> Word64 Mod64::inv = 0;
template <> Word64 Mod64::r2 = 0;
template <> Word64 Mod64::mask = 0;
template <> Word64 Mod64::one = 0;
template <> int Mod64::shift = 0;
template <> Word32 Mod32::mod = 0;
template <> Word32 Mod32::inv = 0;
template <> Word32 Mod32::r2 = 0;
template <> Word32 Mod32::mask = 0;
template <> Word32 Mod32::one = 0;
template <> int Mod32::shift = 0;
template <class word, class mod>
bool is_prime(word n, const Word32* bases, int m) {
mod::set_mod(n);
int s = __builtin_ctzll(n - 1);
word d = (n - 1) >> s;
mod one{1}, minus_one{n - 1};
for (int i = 0, j; i < m; ++i) {
mod a = mod(bases[i]).pow(d);
if (a == one || a == minus_one) continue;
for (j = s - 1; j > 0; --j) {
if ((a *= a) == minus_one) break;
}
if (j == 0) return false;
}
return true;
}
bool miller_rabin(Word n) {
static const Word32 bases[][7] = {
{2, 3},
{2, 299417},
{2, 7, 61},
{15, 176006322, Word32(4221622697)},
{2, 2570940, 211991001, Word32(3749873356)},
{2, 2570940, 880937, 610386380, Word32(4130785767)},
{2, 325, 9375, 28178, 450775, 9780504, 1795265022}
};
if (n <= 1) return false;
if (!(n & 1)) return n == 2;
if (n <= 8) return true;
int x = 6, y = 7;
if (n < 1373653) x = 0, y = 2;
else if (n < 19471033) x = 1, y = 2;
else if (n < 4759123141) x = 2, y = 3;
else if (n < 154639673381) x = y = 3;
else if (n < 47636622961201) x = y = 4;
else if (n < 3770579582154547) x = y = 5;
if (n < (Word32(1) << 31)) return is_prime<Word32, UnsafeMod32>(n, bases[x], y);
else if (n < (Word64(1) << 63)) return is_prime<Word64, UnsafeMod64>(n, bases[x], y);
else assert(0);
}
int main() {
int Q; cin >> Q;
LOOP(Q) {
Word x; cin >> x;
cout << x << ' ' << miller_rabin(x) << '\n';
}
return 0;
}