結果

問題 No.1361 [Zelkova 4th Tune *] QUADRUPLE-SEQUENCEの詩
ユーザー 👑 hos.lyrichos.lyric
提出日時 2021-01-22 21:51:37
言語 D
(dmd 2.106.1)
結果
RE  
実行時間 -
コード長 10,242 bytes
コンパイル時間 1,955 ms
コンパイル使用メモリ 170,748 KB
実行使用メモリ 18,020 KB
最終ジャッジ日時 2024-06-22 10:41:34
合計ジャッジ時間 7,357 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 10 ms
17,488 KB
testcase_01 AC 10 ms
10,532 KB
testcase_02 AC 11 ms
10,828 KB
testcase_03 RE -
testcase_04 RE -
testcase_05 RE -
testcase_06 AC 10 ms
11,176 KB
testcase_07 RE -
testcase_08 AC 12 ms
10,440 KB
testcase_09 RE -
testcase_10 RE -
testcase_11 AC 12 ms
11,344 KB
testcase_12 RE -
testcase_13 RE -
testcase_14 AC 11 ms
11,224 KB
testcase_15 AC 12 ms
11,332 KB
testcase_16 AC 12 ms
10,900 KB
testcase_17 RE -
testcase_18 TLE -
testcase_19 -- -
testcase_20 -- -
testcase_21 -- -
testcase_22 -- -
testcase_23 -- -
testcase_24 -- -
testcase_25 -- -
testcase_26 -- -
testcase_27 -- -
testcase_28 -- -
testcase_29 -- -
testcase_30 -- -
testcase_31 -- -
testcase_32 -- -
testcase_33 -- -
testcase_34 -- -
testcase_35 -- -
testcase_36 -- -
testcase_37 -- -
testcase_38 -- -
testcase_39 -- -
testcase_40 -- -
testcase_41 -- -
testcase_42 -- -
testcase_43 -- -
testcase_44 -- -
testcase_45 -- -
testcase_46 -- -
testcase_47 -- -
testcase_48 -- -
testcase_49 -- -
testcase_50 -- -
testcase_51 -- -
testcase_52 -- -
testcase_53 -- -
testcase_54 -- -
testcase_55 -- -
testcase_56 -- -
testcase_57 -- -
testcase_58 -- -
testcase_59 -- -
testcase_60 -- -
testcase_61 -- -
testcase_62 -- -
testcase_63 -- -
testcase_64 -- -
testcase_65 -- -
testcase_66 -- -
testcase_67 -- -
testcase_68 -- -
testcase_69 -- -
testcase_70 -- -
testcase_71 -- -
testcase_72 -- -
testcase_73 -- -
権限があれば一括ダウンロードができます

ソースコード

diff #

import std.conv, std.functional, std.range, std.stdio, std.string;
import std.algorithm, std.array, std.bigint, std.bitmanip, std.complex, std.container, std.math, std.mathspecial, std.numeric, std.regex, std.typecons;
import core.bitop;

class EOFException : Throwable { this() { super("EOF"); } }
string[] tokens;
string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; }
int readInt() { return readToken.to!int; }
long readLong() { return readToken.to!long; }
real readReal() { return readToken.to!real; }

bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } }
bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } }

int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; }
int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); }
int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); }


// a^-1 (mod m)
long modInv(long a, long m)
in {
  assert(m > 0, "modInv: m > 0 must hold");
}
do {
  long b = m, x = 1, y = 0, t;
  for (; ; ) {
    t = a / b; a -= t * b;
    if (a == 0) {
      assert(b == 1 || b == -1, "modInv: gcd(a, m) != 1");
      if (b == -1) y = -y;
      return (y < 0) ? (y + m) : y;
    }
    x -= t * y;
    t = b / a; b -= t * a;
    if (b == 0) {
      assert(a == 1 || a == -1, "modInv: gcd(a, m) != 1");
      if (a == -1) x = -x;
      return (x < 0) ? (x + m) : x;
    }
    y -= t * x;
  }
}


// M: prime, G: primitive root
class Fft(int M_, int G, int K) {
  import std.algorithm : reverse;
  import std.traits : isIntegral;
  alias M = M_;
  // 1, 1/4, 1/8, 3/8, 1/16, 5/16, 3/16, 7/16, ...
  int[] gs;
  this() {
    static assert(2 <= K && K <= 30, "Fft: 2 <= K <= 30 must hold");
    static assert(!((M - 1) & ((1 << K) - 1)), "Fft: 2^K | M - 1 must hold");
    gs = new int[1 << (K - 1)];
    gs[0] = 1;
    long g2 = G, gg = 1;
    for (int e = (M - 1) >> K; e; e >>= 1) {
      if (e & 1) gg = (gg * g2) % M;
      g2 = (g2 * g2) % M;
    }
    gs[1 << (K - 2)] = cast(int)(gg);
    for (int l = 1 << (K - 2); l >= 2; l >>= 1) {
      gs[l >> 1] = cast(int)((cast(long)(gs[l]) * gs[l]) % M);
    }
    assert((cast(long)(gs[1]) * gs[1]) % M == M - 1,
           "Fft: g^(2^(K-1)) == -1 (mod M) must hold");
    for (int l = 2; l <= 1 << (K - 2); l <<= 1) {
      foreach (i; 1 .. l) {
        gs[l + i] = cast(int)((cast(long)(gs[l]) * gs[i]) % M);
      }
    }
  }
  void fft(int[] xs) const {
    const n = cast(int)(xs.length);
    assert(!(n & (n - 1)), "Fft.fft: |xs| must be a power of two");
    assert(n <= 1 << K, "Fft.fft: |xs| <= 2^K must hold");
    for (int l = n; l >>= 1; ) {
      foreach (i; 0 .. (n >> 1) / l) {
        const(long) g = gs[i];
        foreach (j; (i << 1) * l .. (i << 1 | 1) * l) {
          const t = cast(int)((g * xs[j + l]) % M);
          if ((xs[j + l] = xs[j] - t) < 0) xs[j + l] += M;
          if ((xs[j] += t) >= M) xs[j] -= M;
        }
      }
    }
  }
  void invFft(int[] xs) const {
    const n = cast(int)(xs.length);
    assert(!(n & (n - 1)), "Fft.invFft: |xs| must be a power of two");
    assert(n <= 1 << K, "Fft.invFft: |xs| <= 2^K must hold");
    for (int l = 1; l < n; l <<= 1) reverse(xs[l .. l << 1]);
    for (int l = 1; l < n; l <<= 1) {
      foreach (i; 0 .. (n >> 1) / l) {
        const(long) g = gs[i];
        foreach (j; (i << 1) * l .. (i << 1 | 1) * l) {
          int t = cast(int)((g * (xs[j] - xs[j + l])) % M);
          if (t < 0) t += M;
          if ((xs[j] += xs[j + l]) >= M) xs[j] -= M;
          xs[j + l] = t;
        }
      }
    }
  }
  T[] convolute(T)(inout(T)[] as, inout(T)[] bs) const if (isIntegral!T) {
    const na = cast(int)(as.length), nb = cast(int)(bs.length);
    int n, invN = 1;
    for (n = 1; n < na + nb - 1; n <<= 1) {
      invN = ((invN & 1) ? (invN + M) : invN) >> 1;
    }
    auto xs = new int[n], ys = new int[n];
    foreach (i; 0 .. na) if ((xs[i] = cast(int)(as[i] % M)) < 0) xs[i] += M;
    foreach (i; 0 .. nb) if ((ys[i] = cast(int)(bs[i] % M)) < 0) ys[i] += M;
    fft(xs);
    fft(ys);
    foreach (i; 0 .. n) {
      xs[i] = cast(int)((((cast(long)(xs[i]) * ys[i]) % M) * invN) % M);
    }
    invFft(xs);
    auto cs = new T[na + nb - 1];
    foreach (i; 0 .. na + nb - 1) cs[i] = cast(T)(xs[i]);
    return cs;
  }
  /*
  ModInt!M[] convolute(inout(ModInt!M)[] as, inout(ModInt!M)[] bs) const {
    const na = cast(int)(as.length), nb = cast(int)(bs.length);
    int n, invN = 1;
    for (n = 1; n < na + nb - 1; n <<= 1) {
      invN = ((invN & 1) ? (invN + M) : invN) >> 1;
    }
    auto xs = new int[n], ys = new int[n];
    foreach (i; 0 .. na) xs[i] = as[i].x;
    foreach (i; 0 .. nb) ys[i] = bs[i].x;
    fft(xs);
    fft(ys);
    foreach (i; 0 .. n) {
      xs[i] = cast(int)((((cast(long)(xs[i]) * ys[i]) % M) * invN) % M);
    }
    invFft(xs);
    auto cs = new ModInt!M[na + nb - 1];
    foreach (i; 0 .. na + nb - 1) cs[i].x = xs[i];
    return cs;
  }
  int[] convolute(int M1)(inout(ModInt!M1)[] as, inout(ModInt!M1)[] bs) const
      if (M != M1) {
    const na = cast(int)(as.length), nb = cast(int)(bs.length);
    int n, invN = 1;
    for (n = 1; n < na + nb - 1; n <<= 1) {
      invN = ((invN & 1) ? (invN + M) : invN) >> 1;
    }
    auto xs = new int[n], ys = new int[n];
    foreach (i; 0 .. na) xs[i] = as[i].x;
    foreach (i; 0 .. nb) ys[i] = bs[i].x;
    fft(xs);
    fft(ys);
    foreach (i; 0 .. n) {
      xs[i] = cast(int)((((cast(long)(xs[i]) * ys[i]) % M) * invN) % M);
    }
    invFft(xs);
    return xs[0 .. na + nb - 1];
  }
  */
}

alias Fft0 = Fft!(998244353, 3, 20);


// Fft3_0.M Fft3_1.M Fft3_2.M > 1.15 * 10^27, > 2^89.9
//*
enum FFT_K = 20;
alias Fft3_0 = Fft!(1045430273, 3, FFT_K);  // 2^20 997 + 1
alias Fft3_1 = Fft!(1051721729, 6, FFT_K);  // 2^20 1003 + 1
alias Fft3_2 = Fft!(1053818881, 7, FFT_K);  // 2^20 1005 + 1
//*/
// Fft3_0.M Fft3_1.M Fft3_2.M > 5.95 * 10^25, > 2^85.6
/*
enum FFT_K = 24;
alias Fft3_0 = Fft!(167772161, 3, FFT_K);  // 2^25 5 + 1
alias Fft3_1 = Fft!(469762049, 3, FFT_K);  // 2^26 7 + 1
alias Fft3_2 = Fft!(754974721, 11, FFT_K);  // 2^24 45 + 1
//*/
enum long FFT_INV01 = modInv(Fft3_0.M, Fft3_1.M);
enum long FFT_INV012 = modInv(cast(long)(Fft3_0.M) * Fft3_1.M, Fft3_2.M);
Fft3_0 FFT3_0;
Fft3_1 FFT3_1;
Fft3_2 FFT3_2;
void initFft3() {
  FFT3_0 = new Fft3_0;
  FFT3_1 = new Fft3_1;
  FFT3_2 = new Fft3_2;
}
// for negative result, if (!(0 <= c && c < <bound>)) add MMM:
//   enum MMM = 1L * Fft3_0.M * Fft3_1.M * Fft3_2.M;
long[] convolute(inout(long)[] as, inout(long)[] bs) {
  const cs0 = FFT3_0.convolute(as, bs);
  const cs1 = FFT3_1.convolute(as, bs);
  const cs2 = FFT3_2.convolute(as, bs);
  auto cs = new long[cs0.length];
  foreach (i; 0 .. cs0.length) {
    long d0 = cs0[i] % Fft3_0.M;
    long d1 = (FFT_INV01 * (cs1[i] - d0)) % Fft3_1.M;
    if (d1 < 0) d1 += Fft3_1.M;
    long d2 =
        (FFT_INV012 * ((cs2[i] - d0 - Fft3_0.M * d1) % Fft3_2.M)) % Fft3_2.M;
    if (d2 < 0) d2 += Fft3_2.M;
    cs[i] = d0 + Fft3_0.M * d1 + (cast(long)(Fft3_0.M) * Fft3_1.M) * d2;
  }
  return cs;
}


void main() {
  initFft3;
  
  try {
    for (; ; ) {
      auto N = new int[4];
      foreach (h; 0 .. 4) {
        N[h] = readInt();
      }
      const S = readLong();
      auto A = new long[][4];
      foreach (h; 0 .. 4) {
        A[h] = new long[N[h]];
        foreach (i; 0 .. N[h]) {
          A[h][i] = readLong();
        }
      }
      
      alias Entry = Tuple!(long, "val", int, "i", int, "j");
      Entry[] fs, gs;
      foreach (i; 0 .. N[0]) foreach (j; 0 .. N[1]) {
        fs ~= Entry(A[0][i] * A[1][j], i, j);
      }
      foreach (i; 0 .. N[2]) foreach (j; 0 .. N[3]) {
        gs ~= Entry(A[2][i] * A[3][j], i, j);
      }
      fs.sort;
      gs.sort;
      const fsLen = cast(int)(fs.length);
      const gsLen = cast(int)(gs.length);
      
      const int lbF = fs.lowerBound(Entry(0, int.min, int.min));
      const int ubF = fs.upperBound(Entry(0, int.max, int.max));
      const int lbG = gs.lowerBound(Entry(0, int.min, int.min));
      const int ubG = gs.upperBound(Entry(0, int.max, int.max));
      
      // <= t
      long calc(long t) {
        long ret;
        if (0 <= t) {
          ret += 1L * (ubF - lbF) * (gsLen - 0);
          ret += 1L * (fsLen - 0) * (ubG - lbG);
          ret -= 1L * (ubF - lbF) * (ubG - lbG);
          ret += 1L * (lbF - 0) * (gsLen - ubG);
          ret += 1L * (fsLen - ubF) * (lbG - 0);
          for (int i = lbF, j = 0; j < lbG; ++j) {
            for (; i > 0 && fs[i - 1].val * gs[j].val <= t; --i) {}
            ret += (lbF - i);
          }
          for (int i = ubF, j = gsLen; --j >= ubG; ) {
            for (; i < fsLen && fs[i].val * gs[j].val <= t; ++i) {}
            ret += (i - ubF);
          }
        } else {
          for (int i = 0, j = ubG; j < gsLen; ++j) {
            for (; i < lbF && fs[i].val * gs[j].val <= t; ++t) {}
            ret += (i - 0);
          }
          for (int i = fsLen, j = lbG; --j >= 0; ) {
            for (; i > ubF && fs[i - 1].val * gs[j - 1].val <= t; --i) {}
            ret += (fsLen - i);
          }
        }
        return ret;
      }
      
      long lo = -10L^^18, hi = +10L^^18;
      for (; lo + 1 < hi; ) {
        const mid = (lo + hi) / 2;
        ((calc(mid) >= S) ? hi : lo) = mid;
      }
      
      writeln(hi);
      if (hi == 0) {
        writefln("%s %s %s %s",
                 A[0][fs[lbF].i], A[1][fs[lbF].j],
                 A[2][gs[lbG].i], A[3][gs[lbG].j]);
      } else {
        foreach (ref g; gs) {
          if (g.val != 0 && hi % g.val == 0) {
            const tar = hi / g.val;
            const pos = fs.lowerBound(Entry(tar, int.min, int.min));
            if (pos < fsLen && fs[pos].val == tar) {
              writefln("%s %s %s %s",
                       A[0][fs[pos].i], A[1][fs[pos].j],
                       A[2][g.i], A[3][g.j]);
              break;
            }
          }
        }
      }
    }
  } catch (EOFException e) {
  }
}
0