結果
問題 | No.1358 [Zelkova 2nd Tune *] 語るなら枚数を... |
ユーザー | 👑 emthrm |
提出日時 | 2021-01-23 02:19:04 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,944 bytes |
コンパイル時間 | 2,215 ms |
コンパイル使用メモリ | 203,676 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-09 08:00:01 |
合計ジャッジ時間 | 4,816 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
5,248 KB |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
ソースコード
#define _USE_MATH_DEFINES #include <bits/stdc++.h> using namespace std; #define FOR(i,m,n) for(int i=(m);i<(n);++i) #define REP(i,n) FOR(i,0,n) #define ALL(v) (v).begin(),(v).end() using ll = long long; constexpr int INF = 0x3f3f3f3f; constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL; constexpr double EPS = 1e-8; constexpr int MOD = 1000000007; // constexpr int MOD = 998244353; constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1}; constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1}; template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; } template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; } struct IOSetup { IOSetup() { std::cin.tie(nullptr); std::ios_base::sync_with_stdio(false); std::cout << fixed << setprecision(20); } } iosetup; template <int MOD> struct MInt { unsigned val; MInt(): val(0) {} MInt(long long x) : val(x >= 0 ? x % MOD : x % MOD + MOD) {} static int get_mod() { return MOD; } static void set_mod(int divisor) { assert(divisor == MOD); } MInt pow(long long exponent) const { MInt tmp = *this, res = 1; while (exponent > 0) { if (exponent & 1) res *= tmp; tmp *= tmp; exponent >>= 1; } return res; } MInt &operator+=(const MInt &x) { if((val += x.val) >= MOD) val -= MOD; return *this; } MInt &operator-=(const MInt &x) { if((val += MOD - x.val) >= MOD) val -= MOD; return *this; } MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % MOD; return *this; } MInt &operator/=(const MInt &x) { // assert(std::__gcd(static_cast<int>(x.val), MOD) == 1); unsigned a = x.val, b = MOD; int u = 1, v = 0; while (b) { unsigned tmp = a / b; std::swap(a -= tmp * b, b); std::swap(u -= tmp * v, v); } return *this *= u; } bool operator==(const MInt &x) const { return val == x.val; } bool operator!=(const MInt &x) const { return val != x.val; } bool operator<(const MInt &x) const { return val < x.val; } bool operator<=(const MInt &x) const { return val <= x.val; } bool operator>(const MInt &x) const { return val > x.val; } bool operator>=(const MInt &x) const { return val >= x.val; } MInt &operator++() { if (++val == MOD) val = 0; return *this; } MInt operator++(int) { MInt res = *this; ++*this; return res; } MInt &operator--() { val = (val == 0 ? MOD : val) - 1; return *this; } MInt operator--(int) { MInt res = *this; --*this; return res; } MInt operator+() const { return *this; } MInt operator-() const { return MInt(val ? MOD - val : 0); } MInt operator+(const MInt &x) const { return MInt(*this) += x; } MInt operator-(const MInt &x) const { return MInt(*this) -= x; } MInt operator*(const MInt &x) const { return MInt(*this) *= x; } MInt operator/(const MInt &x) const { return MInt(*this) /= x; } friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; } friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; } }; namespace std { template <int MOD> MInt<MOD> abs(const MInt<MOD> &x) { return x; } } template <int MOD> struct Combinatorics { using ModInt = MInt<MOD>; int val; // "val!" and "mod" must be disjoint. std::vector<ModInt> fact, fact_inv, inv; Combinatorics(int val = 10000000) : val(val), fact(val + 1), fact_inv(val + 1), inv(val + 1) { fact[0] = 1; for (int i = 1; i <= val; ++i) fact[i] = fact[i - 1] * i; fact_inv[val] = ModInt(1) / fact[val]; for (int i = val; i > 0; --i) fact_inv[i - 1] = fact_inv[i] * i; for (int i = 1; i <= val; ++i) inv[i] = fact[i - 1] * fact_inv[i]; } ModInt nCk(int n, int k) const { if (n < 0 || n < k || k < 0) return 0; assert(n <= val && k <= val); return fact[n] * fact_inv[k] * fact_inv[n - k]; } ModInt nPk(int n, int k) const { if (n < 0 || n < k || k < 0) return 0; assert(n <= val); return fact[n] * fact_inv[n - k]; } ModInt nHk(int n, int k) const { if (n < 0 || k < 0) return 0; return k == 0 ? 1 : nCk(n + k - 1, k); } }; using ModInt = MInt<MOD>; template <typename T> std::pair<T, T> ext_gcd(T a, T b) { if (b == 0) return {1, 0}; T fst, snd; std::tie(fst, snd) = ext_gcd(b, a % b); return {snd, fst - a / b * snd}; } void solve() { int n, k, h; ll y; cin >> n >> k >> h >> y; if (n > k) swap(n, k); if (k > h) swap(k, h); if (n > k) swap(n, k); ll g = gcd(n, k), a = n / g, b = k / g; auto [pa, pb] = ext_gcd(a, b); ll ans = 0; for (ll hi = 0; hi * h <= y; ++hi) { ll money = y - hi * h; if (money % g > 0) continue; money /= g; ans += max(pb * money / a - (pa > 0 ? -pa * money / b : (-pa * money + b - 1) / b) + 1, 0LL); } cout << ans % MOD << '\n'; } int main() { int t; cin >> t; while (t--) solve(); return 0; }