結果
問題 | No.1441 MErGe |
ユーザー | 👑 Kazun |
提出日時 | 2021-03-26 22:33:59 |
言語 | PyPy3 (7.3.15) |
結果 |
RE
|
実行時間 | - |
コード長 | 7,662 bytes |
コンパイル時間 | 213 ms |
コンパイル使用メモリ | 82,120 KB |
実行使用メモリ | 209,696 KB |
最終ジャッジ日時 | 2024-11-29 00:14:14 |
合計ジャッジ時間 | 25,564 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 43 ms
61,604 KB |
testcase_01 | AC | 45 ms
184,340 KB |
testcase_02 | AC | 41 ms
61,020 KB |
testcase_03 | RE | - |
testcase_04 | RE | - |
testcase_05 | RE | - |
testcase_06 | RE | - |
testcase_07 | RE | - |
testcase_08 | RE | - |
testcase_09 | RE | - |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | RE | - |
testcase_13 | TLE | - |
testcase_14 | TLE | - |
testcase_15 | RE | - |
testcase_16 | TLE | - |
testcase_17 | RE | - |
testcase_18 | RE | - |
testcase_19 | RE | - |
testcase_20 | RE | - |
testcase_21 | RE | - |
testcase_22 | RE | - |
testcase_23 | TLE | - |
testcase_24 | RE | - |
testcase_25 | TLE | - |
testcase_26 | TLE | - |
testcase_27 | TLE | - |
testcase_28 | TLE | - |
testcase_29 | TLE | - |
ソースコード
class Lazy_Evaluation_Tree(): def __init__(self,L,calc,unit,op,comp,id,index): """calcを演算,opを作用とするリストLのSegment Treeを作成 calc:演算 unit:モノイドcalcの単位元 (xe=ex=xを満たすe) op:作用素 comp:作用素の合成 id:恒等写像 [条件] M:Monoid,F={f:F x M→ M:作用素}に対して,以下が成立する. Fは恒等写像 id を含む.つまり,任意の x in M に対して id(x)=x Fは写像の合成に閉じている.つまり,任意の f,g in F に対して, comp(f,g) in F 任意の f in F, x,y in M に対して,f(xy)=f(x)f(y)である. [注記] 作用素は左から掛ける.更新も左から. """ self.calc=calc self.unit=unit self.op=op self.comp=comp self.id=id self.index=index N=len(L) d=max(1,(N-1).bit_length()) k=1<<d self.data=[unit]*k+L+[unit]*(k-len(L)) self.lazy=[self.id]*(2*k) self.N=k self.depth=d for i in range(k-1,0,-1): self.data[i]=calc(self.data[i<<1],self.data[i<<1|1]) def _eval_at(self,m): if self.lazy[m]==self.id: return self.data[m] return self.op(self.lazy[m],self.data[m]) #配列の第m要素を下に伝搬 def _propagate_at(self,m): self.data[m]=self._eval_at(m) if m<self.N and self.lazy[m]!=self.id: self.lazy[m<<1]=self.comp( self.lazy[m], self.lazy[m<<1] ) self.lazy[m<<1|1]=self.comp( self.lazy[m], self.lazy[m<<1|1] ) self.lazy[m]=self.id #配列の第m要素より上を全て伝搬 def _propagate_above(self,m): H=m.bit_length() for h in range(H-1,0,-1): self._propagate_at(m>>h) #配列の第m要素より上を全て再計算 def _recalc_above(self,m): while m>1: m>>=1 self.data[m]=self.calc( self._eval_at(m<<1), self._eval_at(m<<1|1) ) def get(self,k): index=self.index m=k-index+self.N self._propagate_above(m) self.data[m]=self._eval_at(m) self.lazy[m]=self.id return self.data[m] #作用 def operate(self,From,To,alpha,left_closed=True,right_closed=True): index=self.index L=(From-index)+self.N+(not left_closed) R=(To-index)+self.N+(right_closed) L0=R0=-1 X,Y=L,R-1 while X<Y: if X&1: L0=max(L0,X) X+=1 if Y&1==0: R0=max(R0,Y) Y-=1 X>>=1 Y>>=1 L0=max(L0,X) R0=max(R0,Y) self._propagate_above(L0) self._propagate_above(R0) while L<R: if L&1: self.lazy[L]=self.comp(alpha,self.lazy[L]) L+=1 if R&1: R-=1 self.lazy[R]=self.comp(alpha,self.lazy[R]) L>>=1 R>>=1 self._recalc_above(L0) self._recalc_above(R0) def update(self,k,x): """ 第k要素をxに変更する. """ index=self.index m=k-index+self.N self._propagate_above(m) self.data[m]=x self.lazy[m]=self.id self._recalc_above(m) def product(self,From,To,left_closed=True,right_closed=True): index=self.index L=(From-index)+self.N+(not left_closed) R=(To-index)+self.N+(right_closed) L0=R0=-1 X,Y=L,R-1 while X<Y: if X&1: L0=max(L0,X) X+=1 if Y&1==0: R0=max(R0,Y) Y-=1 X>>=1 Y>>=1 L0=max(L0,X) R0=max(R0,Y) self._propagate_above(L0) self._propagate_above(R0) vL=vR=self.unit while L<R: if L&1: vL=self.calc(vL,self._eval_at(L)) L+=1 if R&1: R-=1 vR=self.calc(self._eval_at(R),vR) L>>=1 R>>=1 return self.calc(vL,vR) def all_product(self): return self.product(1,self.N,1) #リフレッシュ def refresh(self): for m in range(1,2*self.N): self.data[m]=self._eval_at(m) if m<self.N and self.lazy[m]!=self.id: self.lazy[m<<1]=self.comp( self.lazy[m], self.lazy[m<<1] ) self.lazy[m<<1|1]=self.comp( self.lazy[m], self.lazy[m<<1|1] ) self.lazy[m]=self.id def __getitem__(self,k): return self.get(k) def __setitem__(self,k,x): self.update(k,x) #================================================ def General_Binary_Increase_Search(L,R,cond,Integer=True,ep=1/(1<<20),Times=50): """条件式が単調増加であるとき,一般的な二部探索を行う. L:解の下限 R:解の上限 cond:条件(1変数関数,広義単調減少 or 広義単調減少を満たす) Integer:解を整数に制限するか? ep:Integer=Falseのとき,解の許容する誤差 """ if not(cond(R)): return None if cond(L): return L if Integer: R+=1 while R-L>1: C=L+(R-L)//2 if cond(C): R=C else: L=C return R else: while (R-L)>=ep and Times: Times-=1 C=L+(R-L)/2 if cond(C): R=C else: L=C return R def General_Binary_Decrease_Search(L,R,cond,Integer=True,ep=1/(1<<20),Times=50): """条件式が単調減少であるとき,一般的な二部探索を行う. L:解の下限 R:解の上限 cond:条件(1変数関数,広義単調減少 or 広義単調減少を満たす) Integer:解を整数に制限するか? ep:Integer=Falseのとき,解の許容する誤差 """ if not(cond(L)): return None if cond(R): return R if Integer: L-=1 while R-L>1: C=L+(R-L)//2 if cond(C): L=C else: R=C return L else: while (R-L)>=ep and Times: Times-=1 C=L+(R-L)/2 if cond(C): L=C else: R=C return L #================================================ def op(a,x): if a>=0: return x-a else: return -a def comp(a,b): if a<0: return a else: if b<0: return b-a else: return a+b import sys input=sys.stdin.readline write=sys.stdout.write N,Q=map(int,input().split()) A=["*"]+list(map(int,input().split())) A_cum=[0]*(N+1) for i in range(N): A_cum[i+1]=A[i+1]+A_cum[i] S=Lazy_Evaluation_Tree(list(range(1,N+1)),max,0,op,comp,0,1) X=[] for _ in range(Q): T,l,r=map(int,input().split()) L=General_Binary_Increase_Search(1,N,lambda x:S.product(x,x)>=l) R=General_Binary_Decrease_Search(1,N,lambda x:S.product(x,x)<=r) if T==1: move=S.product(R,R)-S.product(L,L) S.operate(L,R,-L) if R+1<=N: S.operate(R+1,N,move) S.refresh() else: X.append(A_cum[R]-A_cum[L-1]) write("\n".join(map(str,X)))