結果
問題 | No.1442 I-wate Shortest Path Problem |
ユーザー | chineristAC |
提出日時 | 2021-03-26 22:50:19 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,157 bytes |
コンパイル時間 | 238 ms |
コンパイル使用メモリ | 82,312 KB |
実行使用メモリ | 191,736 KB |
最終ジャッジ日時 | 2024-05-06 16:44:51 |
合計ジャッジ時間 | 30,446 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 41 ms
56,960 KB |
testcase_01 | AC | 45 ms
56,960 KB |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | AC | 628 ms
163,356 KB |
testcase_23 | AC | 1,581 ms
178,176 KB |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
ソースコード
class Dijkstra(): class Edge(): def __init__(self, _to, _cost): self.to = _to self.cost = _cost def __init__(self, V): self.G = [[] for i in range(V)] self._E = 0 self._V = V @property def E(self): return self._E @property def V(self): return self._V def add_edge(self, _from, _to, _cost): self.G[_from].append(self.Edge(_to, _cost)) self._E += 1 def shortest_path(self, start): import heapq que = [] d = [10**15] * self.V if type(start)==int: s = start d[s] = 0 heapq.heappush(que, (0, s)) else: for s in start: d[s] = 0 heapq.heappush(que,(0,s)) while len(que) != 0: cost, v = heapq.heappop(que) if d[v] < cost: continue for i in range(len(self.G[v])): e = self.G[v][i] if d[e.to] > d[v] + e.cost: d[e.to] = d[v] + e.cost heapq.heappush(que, (d[e.to], e.to)) return d import sys,random,bisect from collections import deque,defaultdict from heapq import heapify,heappop,heappush from itertools import permutations from math import gcd input = lambda :sys.stdin.readline().rstrip() mi = lambda :map(int,input().split()) li = lambda :list(mi()) N,K = mi() edge = [[] for i in range(N)] tree = Dijkstra(N) for _ in range(N-1): a,b,c = mi() edge[a-1].append((b-1,c)) edge[b-1].append((a-1,c)) tree.add_edge(a-1,b-1,c) tree.add_edge(b-1,a-1,c) air = [] air_city = [] for _ in range(K): m,p = mi() air.append((m,p)) air_city.append([int(a)-1 for a in input().split()]) dist_from_air = [[10**17 for i in range(N)] for a in range(K)] for a in range(K): dist_from_air[a] = tree.shortest_path(air_city[a]) airs = Dijkstra(K) for i in range(K): for j in range(K): tmp = 10**17 for _from in air_city[i]: tmp = min(dist_from_air[j][_from],tmp) tmp += air[j][1] airs.add_edge(i,j,tmp) dist = [airs.shortest_path(i) for i in range(K)] # N: 頂点数 # G[v]: 頂点vの子頂点 (親頂点は含まない) parent = [-1 for i in range(N)] deq = deque([0]) while deq: v = deq.popleft() for nv,c in edge[v]: if parent[nv]==-1 and nv!=0: parent[nv] = v deq.append(nv) edge = [[(nv,c) for nv,c in edge[v] if nv!=parent[v]] for v in range(N)] # Euler Tour の構築 depth = [0]*N depth_dist = [0]*N cnt = [0 for v in range(N)] stack = [(0,0,0)] S = [] F = [0]*N while stack: v,d,di = stack[-1] if cnt[v]==0: F[v] = len(S) depth[v] = d depth_dist[v] = di S.append(v) if cnt[v] == len(edge[v]): stack.pop() continue nv,c = edge[v][cnt[v]] cnt[v] += 1 stack.append((nv,d+1,di+c)) # 存在しない範囲は深さが他よりも大きくなるようにする INF = (N, None) # LCAを計算するクエリの前計算 M = 2*N M0 = 2**(M-1).bit_length() data = [INF]*(2*M0) for i, v in enumerate(S): data[M0-1+i] = (depth[v], i) for i in range(M0-2, -1, -1): data[i] = min(data[2*i+1], data[2*i+2]) # LCAの計算 (generatorで最小値を求める) def _query(a, b): res = INF a += M0; b += M0 while a < b: if b & 1: b -= 1 res = min(res,data[b-1]) if a & 1: res = min(res,data[a-1]) a += 1 a >>= 1; b >>= 1 return res # LCAの計算 (外から呼び出す関数) def lca(u, v): fu = F[u]; fv = F[v] if fu > fv: fu, fv = fv, fu idx = _query(fu,fv+1) return S[idx[1]] def dist_in_tree(u,v): w = lca(u,v) return depth_dist[u] + depth_dist[v] - 2 * depth_dist[w] ans = [] for _ in range(int(input())): u,v = mi() u,v = u-1,v-1 res = dist_in_tree(u,v) for i in range(K): for j in range(K): tmp = dist_from_air[i][u] + air[i][1] + dist[i][j] + dist_from_air[j][v] res = min(res,tmp) ans.append(res) print(*ans,sep="\n")