結果
| 問題 |
No.1442 I-wate Shortest Path Problem
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-03-26 22:57:55 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 3,905 bytes |
| コンパイル時間 | 159 ms |
| コンパイル使用メモリ | 82,048 KB |
| 実行使用メモリ | 183,580 KB |
| 最終ジャッジ日時 | 2024-11-29 01:00:56 |
| 合計ジャッジ時間 | 23,832 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | WA * 2 |
| other | AC * 4 WA * 21 |
ソースコード
class Dijkstra():
class Edge():
def __init__(self, _to, _cost):
self.to = _to
self.cost = _cost
def __init__(self, V):
self.G = [[] for i in range(V)]
self._E = 0
self._V = V
@property
def E(self):
return self._E
@property
def V(self):
return self._V
def add_edge(self, _from, _to, _cost):
self.G[_from].append(self.Edge(_to, _cost))
self._E += 1
def shortest_path(self, start):
import heapq
que = []
d = [10**15] * self.V
if type(start)==int:
s = start
d[s] = 0
heapq.heappush(que, (0, s))
else:
for s in start:
d[s] = 0
heapq.heappush(que,(0,s))
while len(que) != 0:
cost, v = heapq.heappop(que)
if d[v] < cost: continue
for i in range(len(self.G[v])):
e = self.G[v][i]
if d[e.to] > d[v] + e.cost:
d[e.to] = d[v] + e.cost
heapq.heappush(que, (d[e.to], e.to))
return d
import sys,random,bisect
from collections import deque,defaultdict
from heapq import heapify,heappop,heappush
from itertools import permutations
from math import gcd
input = lambda :sys.stdin.buffer.readline()
mi = lambda :map(int,input().split())
li = lambda :list(mi())
N,K = mi()
edge = [[] for i in range(N)]
tree = Dijkstra(N)
for _ in range(N-1):
a,b,c = mi()
edge[a-1].append((b-1,c))
edge[b-1].append((a-1,c))
tree.add_edge(a-1,b-1,c)
tree.add_edge(b-1,a-1,c)
air = []
air_city = []
for _ in range(K):
m,p = mi()
air.append((m,p))
air_city.append([int(a)-1 for a in input().split()])
dist_from_air = [[10**17 for i in range(N)] for a in range(K)]
for a in range(K):
dist_from_air[a] = tree.shortest_path(air_city[a])
airs = Dijkstra(K)
for i in range(K):
for j in range(K):
tmp = min(dist_from_air[j][_from] for _from in air_city[i]) + air[j][1]
airs.add_edge(i,j,tmp)
dist = [airs.shortest_path(i) for i in range(K)]
# N: 頂点数
# G[v]: 頂点vの子頂点 (親頂点は含まない)
#
# - construct
# prv[u] = v: 頂点uの一つ上の祖先頂点v
# - lca
# kprv[k][u] = v: 頂点uの2^k個上の祖先頂点v
# depth[u]: 頂点uの深さ (根頂点は0)
prv = [-1 for i in range(N)]
deq = deque([0])
depth = [0 for i in range(N)]
depth_dist = [0 for i in range(N)]
while deq:
v = deq.popleft()
for nv,c in edge[v]:
if prv[nv]==-1 and nv!=0:
prv[nv] = v
depth_dist[nv] = depth_dist[v] + c
depth[nv] = depth[v] + 1
deq.append(nv)
LV = (N-1).bit_length()
kprv = [prv]
S = prv
for k in range(LV):
T = [0]*N
for i in range(N):
if S[i] is None:
continue
T[i] = S[S[i]]
kprv.append(T)
S = T
def lca(u, v):
dd = depth[v] - depth[u]
if dd < 0:
u, v = v, u
dd = -dd
# assert depth[u] <= depth[v]
for k in range(LV+1):
if dd & 1:
v = kprv[k][v]
dd >>= 1
# assert depth[u] == depth[v]
if u == v:
return u
for k in range(LV-1, -1, -1):
pu = kprv[k][u]; pv = kprv[k][v]
if pu != pv:
u = pu; v = pv
# assert kprv[0][u] == kprv[0][v]
return kprv[0][u]
def dist_in_tree(u,v):
w = lca(u,v)
return depth_dist[u] + depth_dist[v] - 2 * depth_dist[w]
ans = []
for _ in range(int(input())):
u,v = mi()
u,v = u-1,v-1
res = dist_in_tree(u,v)
#for i in range(K):
#for j in range(i,K):
#tmp_1 = dist_from_air[i][u] + air[i][1] + dist[i][j] + dist_from_air[j][v]
#tmp_2 = dist_from_air[j][u] + air[i][1] + dist[i][j] + dist_from_air[i][v]
#res = min(res,tmp_1,tmp_2)
ans.append(res)
print(*ans,sep="\n")