結果
問題 | No.1287 えぬけー |
ユーザー | tktk_snsn |
提出日時 | 2021-04-22 22:47:56 |
言語 | PyPy3 (7.3.15) |
結果 |
WA
|
実行時間 | - |
コード長 | 2,776 bytes |
コンパイル時間 | 341 ms |
コンパイル使用メモリ | 82,448 KB |
実行使用メモリ | 191,480 KB |
最終ジャッジ日時 | 2024-07-04 06:35:43 |
合計ジャッジ時間 | 5,461 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 153 ms
92,648 KB |
testcase_01 | AC | 148 ms
85,352 KB |
testcase_02 | AC | 167 ms
90,896 KB |
testcase_03 | AC | 234 ms
106,764 KB |
testcase_04 | WA | - |
testcase_05 | TLE | - |
testcase_06 | -- | - |
testcase_07 | -- | - |
testcase_08 | -- | - |
ソースコード
from collections import defaultdict import sys input = sys.stdin.buffer.readline sys.setrecursionlimit(10 ** 7) def extgcd(a, b): """ 拡張Euclidの互除法 INPUT: a, b OUTPUT: d: gcd(a, b) (x, y): ax + by = d の解 """ if b == 0: return a, (1, 0) d, (y, x) = extgcd(b, a % b) y -= a // b * x return d, (x, y) def crt(B, M): """ 中国剰余定理 x ≡ b0 (mod M0) x ≡ b1 (mod M1) x ≡ b2 (mod M2) となるxを求める INPUT: B:[b0,b1,..] M:[m0,m1,..] OUTPUT: (x, mod) -> x:最小の答え(0<=x<mod) mod:lcm(m0,m1,..) (0,-1) -> 解がない場合 """ x = 0 mod = 1 for b, m in zip(B, M): d, (p, _) = extgcd(mod, m) if (b - x) % d != 0: return 0, -1 x += (b - x) // d * p % (m // d) * mod mod *= m // d return x % mod, mod def invmod(a, m): """ mを法とするaの逆元、つまり ab = 1 (mod m)となるbを返す """ g, (x, y) = extgcd(a, m) return x % m def euler_phi(N): """ Euler totient function [1,N]の自然数のうちNと互いに素なものの個数 """ res = N for i in range(2, int(N ** 0.5) + 1): if N % i == 0: res -= res // i while N % i == 0: N //= i if N != 1: res -= res // i return res def euler_phi_table(N): res = list(range(N)) for i in range(2, N): if res[i] == i: for j in range(i, N, i): res[j] -= res[j] // i return res def get_generator(p): """素数pの最小の原始根を返す""" fact = [] phi = p - 1 n = phi for i in range(2, int(n ** 0.5) + 1): if n % i == 0: fact.append(i) while n % i == 0: n //= i if n > 1: fact.append(n) for res in range(2, p + 1): ok = True for f in fact: ok &= pow(res, phi // f, p) != 1 if not ok: break if ok: return res return -1 def discrete_log(a, b, m): """ a^x = b (mod m)となるxを返す O(sq(m)) """ n = int(m ** 0.5) + 1 memo = defaultdict(int) for p in range(1, n + 1): memo[pow(a, n * p, m)] = p for q in range(n + 1): val = b * pow(a, q, m) % m if memo[val]: return n * memo[val] - q return -1 def main(): T = int(input()) mod = 10 ** 9 + 7 g = get_generator(mod) for _ in range(T): X, K = map(int, input().split()) n = pow(g, K, mod) m = discrete_log(n, X, mod) ans = pow(g, m, mod) print(ans) main()