結果
問題 |
No.981 一般冪乗根
|
ユーザー |
|
提出日時 | 2021-04-29 18:23:38 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 27 ms / 6,000 ms |
コード長 | 2,429 bytes |
コンパイル時間 | 2,144 ms |
コンパイル使用メモリ | 203,024 KB |
最終ジャッジ日時 | 2025-01-21 02:09:17 |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 30 WA * 14 |
ソースコード
#include<bits/stdc++.h> using namespace std; using ll = long long; ll power(ll a, ll n, ll p) { ll r = 1; for (; n > 0; n >>= 1, a = a * a % p) if(n % 2 == 1) r = r * a % p; return r; } int cnt(ll a, ll base,ll p) { int ret = 0; while (a != 1) { a = power(a, base, p); ++ret; } return ret; } ll inverse(ll a, ll p) { a %= p; ll u = 1, v = 0; ll b = p; while (b > 0) { ll q = a / b; a %= b; u -= v * q % p; u = (u % p + p) % p; u ^= v; v ^= u; u ^= v; a ^= b; b ^= a; a ^= b; } return u < 0 ? u + p : u; } ll gcd(ll a,ll b) { return a == 0 ? b : gcd(b % a, a); } ll peth_root(ll a, ll p, int e, ll mod) { ll q = mod - 1; int s = 0; while (q % p == 0) { q /= p; ++s; } ll pe = power(p, e, mod); ll ans = power(a, ((pe - 1) * inverse(q, pe) % pe * q + 1) / pe, mod); ll c = 2; while (power(c, (mod - 1)/p, mod) == 1) ++c; c = power(c, q, mod); map<ll, int> mp; ll add = 1; int v = (int)sqrt((double)(s - e) * p) + 1; ll mul = power(c, v * power(p, s - 1, mod - 1) % (mod - 1), mod); for (int i = 0; i <= v; ++i) { mp[add] = i; add = add * mul % mod; } mul = inverse(power(c, power(p, s - 1, mod - 1), mod), mod); for (int i = e; i<s; ++i) { ll err = inverse(power(ans, pe, mod), mod) * a % mod; ll target = power(err, power(p, s - 1 - i, mod - 1), mod); for (int j = 0; j <= v; ++j) { if (mp.find(target) != mp.end()) { int x = mp[target]; ans = ans * power(c, (j + v * x) * power(p, i - e, mod - 1) % (mod - 1), mod) % mod; break; } target = target * mul % mod; assert(j != v); } } return ans; } // Find any x such that x ^ k = a (mod p), p is a prime // 0^0 = 1 mod p // Complexity: O(p ^ (1 / 4)) ll discrete_root(ll k, ll a, ll p) { if (k > 0 && a == 0) return 0; k %= p - 1; ll g = gcd(k, p - 1); if (power(a, (p - 1) / g, p) != 1) return -1; // checking existence a = power(a, inverse(k / g, (p - 1) / g), p); for (ll div = 2; div * div <= g; ++div) { int sz = 0; while (g % div == 0) g /= div, ++sz; if (sz > 0) { ll b = peth_root(a, div, sz, p); a = b; } } if (g > 1) a = peth_root(a, g, 1, p); return a; } int32_t main() { ios_base::sync_with_stdio(0); cin.tie(0); int t; cin >> t; while (t--) { ll k, a, p; cin >> p >> k >> a; cout << discrete_root(k, a, p) << '\n'; } }