結果

問題 No.1549 [Cherry 2nd Tune] BANning Tuple
ユーザー 👑 emthrmemthrm
提出日時 2021-06-11 23:26:57
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 18,923 bytes
コンパイル時間 3,376 ms
コンパイル使用メモリ 234,028 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-05-08 19:51:32
合計ジャッジ時間 44,610 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 15 ms
6,812 KB
testcase_01 AC 116 ms
6,944 KB
testcase_02 WA -
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 AC 2,336 ms
6,944 KB
testcase_08 AC 2,014 ms
6,944 KB
testcase_09 AC 2,050 ms
6,940 KB
testcase_10 AC 1,977 ms
6,944 KB
testcase_11 AC 2,144 ms
6,940 KB
testcase_12 AC 1,999 ms
6,940 KB
testcase_13 AC 2,105 ms
6,940 KB
testcase_14 AC 2,099 ms
6,940 KB
testcase_15 AC 2,041 ms
6,944 KB
testcase_16 AC 2,025 ms
6,944 KB
testcase_17 AC 2,005 ms
6,944 KB
testcase_18 AC 2,263 ms
6,940 KB
testcase_19 AC 2,535 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#define _USE_MATH_DEFINES
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
constexpr int dy[] = {1, 0, -1, 0}, dx[] = {0, -1, 0, 1};
constexpr int dy8[] = {1, 1, 0, -1, -1, -1, 0, 1}, dx8[] = {0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U> inline bool chmax(T &a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U> inline bool chmin(T &a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <int M>
struct MInt {
  unsigned int val;
  MInt(): val(0) {}
  MInt(long long x) : val(x >= 0 ? x % M : x % M + M) {}
  static constexpr int get_mod() { return M; }
  static void set_mod(int divisor) { assert(divisor == M); }
  static void init(int x = 10000000) { inv(x, true); fact(x); fact_inv(x); }
  static MInt inv(int x, bool init = false) {
    // assert(0 <= x && x < M && std::__gcd(x, M) == 1);
    static std::vector<MInt> inverse{0, 1};
    int prev = inverse.size();
    if (init && x >= prev) {
      // "x!" and "M" must be disjoint.
      inverse.resize(x + 1);
      for (int i = prev; i <= x; ++i) inverse[i] = -inverse[M % i] * (M / i);
    }
    if (x < inverse.size()) return inverse[x];
    unsigned int a = x, b = M; int u = 1, v = 0;
    while (b) {
      unsigned int q = a / b;
      std::swap(a -= q * b, b);
      std::swap(u -= q * v, v);
    }
    return u;
  }
  static MInt fact(int x) {
    static std::vector<MInt> f{1};
    int prev = f.size();
    if (x >= prev) {
      f.resize(x + 1);
      for (int i = prev; i <= x; ++i) f[i] = f[i - 1] * i;
    }
    return f[x];
  }
  static MInt fact_inv(int x) {
    static std::vector<MInt> finv{1};
    int prev = finv.size();
    if (x >= prev) {
      finv.resize(x + 1);
      finv[x] = inv(fact(x).val);
      for (int i = x; i > prev; --i) finv[i - 1] = finv[i] * i;
    }
    return finv[x];
  }
  static MInt nCk(int n, int k) {
    if (n < 0 || n < k || k < 0) return 0;
    if (n - k > k) k = n - k;
    return fact(n) * fact_inv(k) * fact_inv(n - k);
  }
  static MInt nPk(int n, int k) { return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k); }
  static MInt nHk(int n, int k) { return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k)); }
  static MInt large_nCk(long long n, int k) {
    if (n < 0 || n < k || k < 0) return 0;
    inv(k, true);
    MInt res = 1;
    for (int i = 1; i <= k; ++i) res *= inv(i) * n--;
    return res;
  }
  MInt pow(long long exponent) const {
    MInt tmp = *this, res = 1;
    while (exponent > 0) {
      if (exponent & 1) res *= tmp;
      tmp *= tmp;
      exponent >>= 1;
    }
    return res;
  }
  MInt &operator+=(const MInt &x) { if((val += x.val) >= M) val -= M; return *this; }
  MInt &operator-=(const MInt &x) { if((val += M - x.val) >= M) val -= M; return *this; }
  MInt &operator*=(const MInt &x) { val = static_cast<unsigned long long>(val) * x.val % M; return *this; }
  MInt &operator/=(const MInt &x) { return *this *= inv(x.val); }
  bool operator==(const MInt &x) const { return val == x.val; }
  bool operator!=(const MInt &x) const { return val != x.val; }
  bool operator<(const MInt &x) const { return val < x.val; }
  bool operator<=(const MInt &x) const { return val <= x.val; }
  bool operator>(const MInt &x) const { return val > x.val; }
  bool operator>=(const MInt &x) const { return val >= x.val; }
  MInt &operator++() { if (++val == M) val = 0; return *this; }
  MInt operator++(int) { MInt res = *this; ++*this; return res; }
  MInt &operator--() { val = (val == 0 ? M : val) - 1; return *this; }
  MInt operator--(int) { MInt res = *this; --*this; return res; }
  MInt operator+() const { return *this; }
  MInt operator-() const { return MInt(val ? M - val : 0); }
  MInt operator+(const MInt &x) const { return MInt(*this) += x; }
  MInt operator-(const MInt &x) const { return MInt(*this) -= x; }
  MInt operator*(const MInt &x) const { return MInt(*this) *= x; }
  MInt operator/(const MInt &x) const { return MInt(*this) /= x; }
  friend std::ostream &operator<<(std::ostream &os, const MInt &x) { return os << x.val; }
  friend std::istream &operator>>(std::istream &is, MInt &x) { long long val; is >> val; x = MInt(val); return is; }
};
namespace std { template <int M> MInt<M> abs(const MInt<M> &x) { return x; } }
using ModInt = MInt<MOD>;

template <int T>
struct NumberTheoreticTransform {
  using ModInt = MInt<T>;

  NumberTheoreticTransform() {
    for (int i = 0; i < 23; ++i) {
      if (primes[i][0] == ModInt::get_mod()) {
        n_max = 1 << primes[i][2];
        root = ModInt(primes[i][1]).pow((ModInt::get_mod() - 1) >> primes[i][2]);
        return;
      }
    }
    assert(false);
  }

  void sub_dft(std::vector<ModInt> &a) {
    int n = a.size();
    assert(__builtin_popcount(n) == 1);
    calc(n);
    int shift = __builtin_ctz(butterfly.size()) - __builtin_ctz(n);
    for (int i = 0; i < n; ++i) {
      int j = butterfly[i] >> shift;
      if (i < j) std::swap(a[i], a[j]);
    }
    for (int block = 1; block < n; block <<= 1) {
      int den = __builtin_ctz(block);
      for (int i = 0; i < n; i += (block << 1)) for (int j = 0; j < block; ++j) {
        ModInt tmp = a[i + j + block] * omega[den][j];
        a[i + j + block] = a[i + j] - tmp;
        a[i + j] += tmp;
      }
    }
  }

  template <typename U>
  std::vector<ModInt> dft(const std::vector<U> &a) {
    int n = a.size(), lg = 1;
    while ((1 << lg) < n) ++lg;
    std::vector<ModInt> A(1 << lg, 0);
    for (int i = 0; i < n; ++i) A[i] = a[i];
    sub_dft(A);
    return A;
  }

  void idft(std::vector<ModInt> &a) {
    int n = a.size();
    assert(__builtin_popcount(n) == 1);
    sub_dft(a);
    std::reverse(a.begin() + 1, a.end());
    ModInt inv_n = ModInt::inv(n);
    for (int i = 0; i < n; ++i) a[i] *= inv_n;
  }

  template <typename U>
  std::vector<ModInt> convolution(const std::vector<U> &a, const std::vector<U> &b) {
    int a_sz = a.size(), b_sz = b.size(), sz = a_sz + b_sz - 1, lg = 1;
    while ((1 << lg) < sz) ++lg;
    int n = 1 << lg;
    std::vector<ModInt> A(n, 0), B(n, 0);
    for (int i = 0; i < a_sz; ++i) A[i] = a[i];
    for (int i = 0; i < b_sz; ++i) B[i] = b[i];
    sub_dft(A);
    sub_dft(B);
    for (int i = 0; i < n; ++i) A[i] *= B[i];
    idft(A);
    A.resize(sz);
    return A;
  }

private:
  int primes[23][3]{
    {16957441, 329, 14},
    {17006593, 26, 15},
    {19529729, 770, 17},
    {167772161, 3, 25},
    {469762049, 3, 26},
    {645922817, 3, 23},
    {897581057, 3, 23},
    {924844033, 5, 21},
    {935329793, 3, 22},
    {943718401, 7, 22},
    {950009857, 7, 21},
    {962592769, 7, 21},
    {975175681, 17, 21},
    {976224257, 3, 20},
    {985661441, 3, 22},
    {998244353, 3, 23},
    {1004535809, 3, 21},
    {1007681537, 3, 20},
    {1012924417, 5, 21},
    {1045430273, 3, 20},
    {1051721729, 6, 20},
    {1053818881, 7, 20},
    {1224736769, 3, 24}
  };

  int n_max;
  ModInt root;
  std::vector<int> butterfly{0};
  std::vector<std::vector<ModInt>> omega{{1}};

  void calc(int n) {
    int prev_n = butterfly.size();
    if (n <= prev_n) return;
    assert(n <= n_max);
    butterfly.resize(n);
    int prev_lg = omega.size(), lg = __builtin_ctz(n);
    for (int i = 1; i < prev_n; ++i) butterfly[i] <<= lg - prev_lg;
    for (int i = prev_n; i < n; ++i) butterfly[i] = (butterfly[i >> 1] >> 1) | ((i & 1) << (lg - 1));
    omega.resize(lg);
    for (int i = prev_lg; i < lg; ++i) {
      omega[i].resize(1 << i);
      ModInt tmp = root.pow((ModInt::get_mod() - 1) / (1 << (i + 1)));
      for (int j = 0; j < (1 << (i - 1)); ++j) {
        omega[i][j << 1] = omega[i - 1][j];
        omega[i][(j << 1) + 1] = omega[i - 1][j] * tmp;
      }
    }
  }
};

template <typename T>
struct FormalPowerSeries {
  using MUL = std::function<std::vector<T>(const std::vector<T>&, const std::vector<T>&)>;
  using SQR = std::function<bool(const T&, T&)>;
  std::vector<T> co;
  FormalPowerSeries(int deg = 0) : co(deg + 1, 0) {}
  FormalPowerSeries(const std::vector<T> &co) : co(co) {}
  FormalPowerSeries(std::initializer_list<T> init) : co(init.begin(), init.end()) {}
  template <typename InputIter> FormalPowerSeries(InputIter first, InputIter last) : co(first, last) {}
  inline const T &operator[](int term) const { return co[term]; }
  inline T &operator[](int term) { return co[term]; }
  static void set_mul(MUL mul) { get_mul() = mul; }
  static void set_sqr(SQR sqr) { get_sqr() = sqr; }
  void resize(int deg) { co.resize(deg + 1, 0); }
  void shrink() { while (co.size() > 1 && co.back() == 0) co.pop_back(); }
  int degree() const { return static_cast<int>(co.size()) - 1; }
  FormalPowerSeries &operator=(const std::vector<T> &new_co) {
    co.resize(new_co.size());
    std::copy(new_co.begin(), new_co.end(), co.begin());
    return *this;
  }
  FormalPowerSeries &operator=(const FormalPowerSeries &x) {
    co.resize(x.co.size());
    std::copy(x.co.begin(), x.co.end(), co.begin());
    return *this;
  }
  FormalPowerSeries &operator+=(const FormalPowerSeries &x) {
    int n = x.co.size();
    if (n > co.size()) resize(n - 1);
    for (int i = 0; i < n; ++i) co[i] += x.co[i];
    return *this;
  }
  FormalPowerSeries &operator-=(const FormalPowerSeries &x) {
    int n = x.co.size();
    if (n > co.size()) resize(n - 1);
    for (int i = 0; i < n; ++i) co[i] -= x.co[i];
    return *this;
  }
  FormalPowerSeries &operator*=(T x) {
    for (T &e : co) e *= x;
    return *this;
  }
  FormalPowerSeries &operator*=(const FormalPowerSeries &x) { return *this = get_mul()(co, x.co); }
  FormalPowerSeries &operator/=(T x) {
    assert(x != 0);
    T inv_x = static_cast<T>(1) / x;
    for (T &e : co) e *= inv_x;
    return *this;
  }
  FormalPowerSeries &operator/=(const FormalPowerSeries &x) {
    int sz = x.co.size();
    if (sz > co.size()) return *this = FormalPowerSeries();
    int n = co.size() - sz + 1;
    FormalPowerSeries a(co.rbegin(), co.rbegin() + n), b(x.co.rbegin(), x.co.rbegin() + std::min(sz, n));
    b = b.inv(n - 1);
    a *= b;
    return *this = FormalPowerSeries(a.co.rend() - n, a.co.rend());
  }
  FormalPowerSeries &operator%=(const FormalPowerSeries &x) {
    *this -= *this / x * x;
    co.resize(static_cast<int>(x.co.size()) - 1);
    if (co.empty()) co = {0};
    return *this;
  }
  FormalPowerSeries &operator<<=(int n) {
    co.insert(co.begin(), n, 0);
    return *this;
  }
  FormalPowerSeries &operator>>=(int n) {
    if (co.size() < n) return *this = FormalPowerSeries();
    co.erase(co.begin(), co.begin() + n);
    return *this;
  }
  bool operator==(const FormalPowerSeries &x) const {
    FormalPowerSeries a(*this), b(x);
    a.shrink(); b.shrink();
    int n = a.co.size();
    if (n != b.co.size()) return false;
    for (int i = 0; i < n; ++i) if (a.co[i] != b.co[i]) return false;
    return true;
  }
  bool operator!=(const FormalPowerSeries &x) const { return !(*this == x); }
  FormalPowerSeries operator+() const { return *this; }
  FormalPowerSeries operator-() const {
    FormalPowerSeries res(*this);
    for (T &e : res.co) e = -e;
    return res;
  }
  FormalPowerSeries operator+(const FormalPowerSeries &x) const { return FormalPowerSeries(*this) += x; }
  FormalPowerSeries operator-(const FormalPowerSeries &x) const { return FormalPowerSeries(*this) -= x; }
  FormalPowerSeries operator*(T x) const { return FormalPowerSeries(*this) *= x; }
  FormalPowerSeries operator*(const FormalPowerSeries &x) const { return FormalPowerSeries(*this) *= x; }
  FormalPowerSeries operator/(T x) const { return FormalPowerSeries(*this) /= x; }
  FormalPowerSeries operator/(const FormalPowerSeries &x) const { return FormalPowerSeries(*this) /= x; }
  FormalPowerSeries operator%(const FormalPowerSeries &x) const { return FormalPowerSeries(*this) %= x; }
  FormalPowerSeries operator<<(int n) const { return FormalPowerSeries(*this) <<= n; }
  FormalPowerSeries operator>>(int n) const { return FormalPowerSeries(*this) >>= n; }
  T horner(T x) const {
    T res = 0;
    for (int i = static_cast<int>(co.size()) - 1; i >= 0; --i) (res *= x) += co[i];
    return res;
  }
  FormalPowerSeries differential() const {
    int n = co.size();
    assert(n >= 1);
    FormalPowerSeries res(n - 1);
    for (int i = 1; i < n; ++i) res.co[i - 1] = co[i] * i;
    return res;
  }
  FormalPowerSeries integral() const {
    int n = co.size();
    FormalPowerSeries res(n + 1);
    for (int i = 0; i < n; ++i) res[i + 1] = co[i] / (i + 1);
    return res;
  }
  FormalPowerSeries exp(int deg = -1) const {
    assert(co[0] == 0);
    int n = co.size();
    if (deg == -1) deg = n - 1;
    FormalPowerSeries one{1}, res = one;
    for (int i = 1; i <= deg; i <<= 1) {
      res *= FormalPowerSeries(co.begin(), co.begin() + std::min(n, i << 1)) - res.log((i << 1) - 1) + one;
      res.co.resize(i << 1);
    }
    res.co.resize(deg + 1);
    return res;
  }
  FormalPowerSeries inv(int deg = -1) const {
    assert(co[0] != 0);
    int n = co.size();
    if (deg == -1) deg = n - 1;
    FormalPowerSeries res{static_cast<T>(1) / co[0]};
    for (int i = 1; i <= deg; i <<= 1) {
      res = res + res - res * res * FormalPowerSeries(co.begin(), co.begin() + std::min(n, i << 1));
      res.co.resize(i << 1);
    }
    res.co.resize(deg + 1);
    return res;
  }
  FormalPowerSeries log(int deg = -1) const {
    assert(co[0] == 1);
    if (deg == -1) deg = static_cast<int>(co.size()) - 1;
    FormalPowerSeries integrand = differential() * inv(deg - 1);
    integrand.co.resize(deg);
    return integrand.integral();
  }
  FormalPowerSeries pow(long long exponent, int deg = -1) const {
    int n = co.size();
    if (deg == -1) deg = n - 1;
    for (int i = 0; i < n; ++i) {
      if (co[i] != 0) {
        long long shift = exponent * i;
        if (shift > deg) break;
        T tmp = 1, base = co[i];
        long long e = exponent;
        while (e > 0) {
          if (e & 1) tmp *= base;
          base *= base;
          e >>= 1;
        }
        return ((((*this >> i) * (static_cast<T>(1) / co[i])).log(deg - shift)
                * static_cast<T>(exponent)).exp(deg - shift) * tmp)
               << shift;
      }
    }
    return FormalPowerSeries(deg);
  }
  FormalPowerSeries mod_pow(long long exponent, const FormalPowerSeries &md) const {
    FormalPowerSeries inv_rev_md = FormalPowerSeries(md.co.rbegin(), md.co.rend()).inv();
    int deg_of_md = md.co.size();
    auto mod_mul = [&](FormalPowerSeries &multiplicand, const FormalPowerSeries &multiplier) -> void {
      multiplicand *= multiplier;
      if (deg_of_md <= multiplicand.co.size()) {
        int n = multiplicand.co.size() - deg_of_md + 1;
        FormalPowerSeries quotient =
          FormalPowerSeries(multiplicand.co.rbegin(), multiplicand.co.rbegin() + n)
          * FormalPowerSeries(inv_rev_md.co.begin(), inv_rev_md.co.begin() + std::min(static_cast<int>(inv_rev_md.co.size()), n));
        multiplicand -= FormalPowerSeries(quotient.co.rend() - n, quotient.co.rend()) * md;
      }
      multiplicand.co.resize(deg_of_md - 1);
      if (multiplicand.co.empty()) multiplicand.co = {0};
    };
    FormalPowerSeries res{1}, base = *this;
    mod_mul(base, res);
    while (exponent > 0) {
      if (exponent & 1) mod_mul(res, base);
      mod_mul(base, base);
      exponent >>= 1;
    }
    return res;
  }
  FormalPowerSeries sqrt(int deg = -1) const {
    int n = co.size();
    if (deg == -1) deg = n - 1;
    if (co[0] == 0) {
      for (int i = 1; i < n; ++i) {
        if (co[i] == 0) continue;
        if (i & 1) return FormalPowerSeries(-1);
        int shift = i >> 1;
        if (deg < shift) break;
        FormalPowerSeries res = (*this >> i).sqrt(deg - shift);
        if (res.co.empty()) return FormalPowerSeries(-1);
        res <<= shift;
        res.resize(deg);
        return res;
      }
      return FormalPowerSeries(deg);
    }
    T s;
    if (!get_sqr()(co[0], s)) return FormalPowerSeries(-1);
    FormalPowerSeries res{s};
    T half = static_cast<T>(1) / 2;
    for (int i = 1; i <= deg; i <<= 1) {
      (res += FormalPowerSeries(co.begin(), co.begin() + std::min(n, i << 1)) * res.inv((i << 1) - 1)) *= half;
    }
    res.resize(deg);
    return res;
  }
  FormalPowerSeries translate(T c) const {
    int n = co.size();
    std::vector<T> fact(n, 1), inv_fact(n, 1);
    for (int i = 1; i < n; ++i) fact[i] = fact[i - 1] * i;
    inv_fact[n - 1] = static_cast<T>(1) / fact[n - 1];
    for (int i = n - 1; i > 0; --i) inv_fact[i - 1] = inv_fact[i] * i;
    std::vector<T> g(n), ex(n);
    for (int i = 0; i < n; ++i) g[n - 1 - i] = co[i] * fact[i];
    T pow_c = 1;
    for (int i = 0; i < n; ++i) {
      ex[i] = pow_c * inv_fact[i];
      pow_c *= c;
    }
    std::vector<T> conv = get_mul()(g, ex);
    FormalPowerSeries res(n - 1);
    for (int i = 0; i < n; ++i) res[i] = conv[n - 1 - i] * inv_fact[i];
    return res;
  }
private:
  static MUL &get_mul() {
    static MUL mul = [](const std::vector<T> &a, const std::vector<T> &b) -> std::vector<T> {
      int n = a.size(), m = b.size();
      std::vector<T> res(n + m - 1, 0);
      for (int i = 0; i < n; ++i) for (int j = 0; j < m; ++j) res[i + j] += a[i] * b[j];
      return res;
    };
    return mul;
  }
  static SQR &get_sqr() {
    static SQR sqr = [](const T &a, T &res) -> bool { return false; };
    return sqr;
  }
};

int main() {
  NumberTheoreticTransform<MOD> ntt;
  FormalPowerSeries<ModInt>::set_mul([&](const vector<ModInt> &a, const vector<ModInt> &b) -> vector<ModInt> {
    return ntt.convolution(a, b);
  });
  constexpr int D = 3000;
  ll n; int q; cin >> n >> q;
  FormalPowerSeries<ModInt> f({1, -1});
  f = f.inv(D * 2);
  auto make_fps = [&](int l, int r) -> FormalPowerSeries<ModInt> {
    FormalPowerSeries<ModInt> g(l);
    fill(ALL(g.co), 1);
    g += f << r;
    g.resize(D * 2);
    return g;
  };
  FormalPowerSeries<ModInt> ans(D * 2);
  ans[0] = 1;
  map<ll, pair<int, int>> cond;
  while (q--) {
    ll k; int a, b; cin >> k >> a >> b;
    if (cond.count(k) == 0) {
      cond[k] = {D, 0};
    } else {
      ans *= make_fps(cond[k].first, cond[k].second).inv(D * 2);
    }
    chmin(cond[k].first, a - 1);
    chmax(cond[k].second, b + 1);
    ans *= make_fps(cond[k].first, cond[k].second);
    ans.resize(D * 2);
    int s, t; cin >> s >> t;
    ModInt pat = 0;
    REP(i, t + 1) {
      pat += ans[i] * ModInt::large_nCk(n - cond.size() + (t - i), t - i);
    }
    REP(i, s) {
      pat -= ans[i] * ModInt::large_nCk(n - cond.size() + (s - 1 - i), s - 1 - i);
    }
    cout << pat << '\n';
  }
  return 0;
}
0