結果
問題 | No.1549 [Cherry 2nd Tune] BANning Tuple |
ユーザー | tokusakurai |
提出日時 | 2021-06-12 09:25:56 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 12,496 bytes |
コンパイル時間 | 2,450 ms |
コンパイル使用メモリ | 227,296 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-05-09 11:45:43 |
合計ジャッジ時間 | 6,610 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 8 ms
5,248 KB |
testcase_01 | AC | 52 ms
5,376 KB |
testcase_02 | AC | 215 ms
5,376 KB |
testcase_03 | AC | 169 ms
5,376 KB |
testcase_04 | AC | 160 ms
5,376 KB |
testcase_05 | AC | 170 ms
5,376 KB |
testcase_06 | AC | 178 ms
5,376 KB |
testcase_07 | RE | - |
testcase_08 | RE | - |
testcase_09 | RE | - |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | RE | - |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | RE | - |
testcase_16 | RE | - |
testcase_17 | RE | - |
testcase_18 | RE | - |
testcase_19 | RE | - |
ソースコード
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for(int i = 0; i < n; i++) #define rep2(i, x, n) for(int i = x; i <= n; i++) #define rep3(i, x, n) for(int i = x; i >= n; i--) #define each(e, v) for(auto &e: v) #define pb push_back #define eb emplace_back #define all(x) x.begin(), x.end() #define rall(x) x.rbegin(), x.rend() #define sz(x) (int)x.size() using ll = long long; using pii = pair<int, int>; using pil = pair<int, ll>; using pli = pair<ll, int>; using pll = pair<ll, ll>; //const int MOD = 1000000007; const int MOD = 998244353; const int inf = (1<<30)-1; const ll INF = (1LL<<60)-1; template<typename T> bool chmax(T &x, const T &y) {return (x < y)? (x = y, true) : false;}; template<typename T> bool chmin(T &x, const T &y) {return (x > y)? (x = y, true) : false;}; struct io_setup{ io_setup(){ ios_base::sync_with_stdio(false); cin.tie(NULL); cout << fixed << setprecision(15); } } io_setup; template<int mod> struct Mod_Int{ int x; Mod_Int() : x(0) {} Mod_Int(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} Mod_Int &operator += (const Mod_Int &p){ if((x += p.x) >= mod) x -= mod; return *this; } Mod_Int &operator -= (const Mod_Int &p){ if((x += mod - p.x) >= mod) x -= mod; return *this; } Mod_Int &operator *= (const Mod_Int &p){ x = (int) (1LL * x * p.x % mod); return *this; } Mod_Int &operator /= (const Mod_Int &p){ *this *= p.inverse(); return *this; } Mod_Int &operator ++ () {return *this += Mod_Int(1);} Mod_Int operator ++ (int){ Mod_Int tmp = *this; ++*this; return tmp; } Mod_Int &operator -- () {return *this -= Mod_Int(1);} Mod_Int operator -- (int){ Mod_Int tmp = *this; --*this; return tmp; } Mod_Int operator - () const {return Mod_Int(-x);} Mod_Int operator + (const Mod_Int &p) const {return Mod_Int(*this) += p;} Mod_Int operator - (const Mod_Int &p) const {return Mod_Int(*this) -= p;} Mod_Int operator * (const Mod_Int &p) const {return Mod_Int(*this) *= p;} Mod_Int operator / (const Mod_Int &p) const {return Mod_Int(*this) /= p;} bool operator == (const Mod_Int &p) const {return x == p.x;} bool operator != (const Mod_Int &p) const {return x != p.x;} Mod_Int inverse() const { assert(*this != Mod_Int(0)); return pow(mod-2); } Mod_Int pow(long long k) const{ Mod_Int now = *this, ret = 1; for(; k > 0; k >>= 1, now *= now){ if(k&1) ret *= now; } return ret; } friend ostream &operator << (ostream &os, const Mod_Int &p){ return os << p.x; } friend istream &operator >> (istream &is, Mod_Int &p){ long long a; is >> a; p = Mod_Int<mod>(a); return is; } }; using mint = Mod_Int<998244353>; template<int mod, int primitive_root> struct Number_Theorem_Transform{ using T = Mod_Int<mod>; vector<T> r, ir; Number_Theorem_Transform(){ r.resize(30), ir.resize(30); for(int i = 0; i < 30; i++){ r[i] = -T(primitive_root).pow((mod-1)>>(i+2)); ir[i] = r[i].inverse(); } } void ntt(vector<T> &a, int n) const{ assert((n&(n-1)) == 0); a.resize(n); for(int k = n; k >>= 1;){ T w = 1; for(int s = 0, t = 0; s < n; s += 2*k){ for(int i = s, j = s+k; i < s+k; i++, j++){ T x = a[i], y = w*a[j]; a[i] = x+y, a[j] = x-y; } w *= r[__builtin_ctz(++t)]; } } } void intt(vector<T> &a, int n) const{ assert((n&(n-1)) == 0); a.resize(n); for(int k = 1; k < n; k <<= 1){ T w = 1; for(int s = 0, t = 0; s < n; s += 2*k){ for(int i = s, j = s+k; i < s+k; i++, j++){ T x = a[i], y = a[j]; a[i] = x+y, a[j] = w*(x-y); } w *= ir[__builtin_ctz(++t)]; } } T inv = T(n).inverse(); for(auto &e: a) e *= inv; } vector<T> convolve(vector<T> a, vector<T> b) const{ int k = (int)a.size()+(int)b.size()-1, n = 1; while(n < k) n <<= 1; ntt(a, n), ntt(b, n); for(int i = 0; i < n; i++) a[i] *= b[i]; intt(a, n), a.resize(k); return a; } }; template<int mod, int primitive_root> struct Formal_Power_Series : vector<Mod_Int<mod>>{ using T = Mod_Int<mod>; Number_Theorem_Transform<mod, primitive_root> NTT; using vector<T> :: vector; Formal_Power_Series(const vector<T> &v) : vector<T>(v) {} Formal_Power_Series pre(int n) const{ return Formal_Power_Series(begin(*this), begin(*this)+min((int)this->size(), n)); } Formal_Power_Series rev() const{ Formal_Power_Series ret = *this; reverse(begin(ret), end(ret)); return ret; } Formal_Power_Series &normalize(){ while(!this->empty() && this->back() == 0) this->pop_back(); return *this; } Formal_Power_Series operator - () const noexcept{ Formal_Power_Series ret = *this; for(int i = 0; i < (int)ret.size(); i++) ret[i] = -ret[i]; return ret; } Formal_Power_Series &operator += (const T &x){ if(this->empty()) this->resize(1); (*this)[0] += x; return *this; } Formal_Power_Series &operator += (const Formal_Power_Series &v){ if(v.size() > this->size()) this->resize(v.size()); for(int i = 0; i < (int)v.size(); i++) (*this)[i] += v[i]; return this->normalize(); } Formal_Power_Series &operator -= (const T &x){ if(this->empty()) this->resize(1); *this[0] -= x; return *this; } Formal_Power_Series &operator -= (const Formal_Power_Series &v){ if(v.size() > this->size()) this->resize(v.size()); for(int i = 0; i < (int)v.size(); i++) (*this)[i] -= v[i]; return this->normalize(); } Formal_Power_Series &operator *= (const T &x){ for(int i = 0; i < (int)this->size(); i++) (*this)[i] *= x; return *this; } Formal_Power_Series &operator *= (const Formal_Power_Series &v){ return *this = NTT.convolve(*this, v); } Formal_Power_Series &operator /= (const T &x){ assert(x != 0); T inv = x.inverse(); for(int i = 0; i < (int)this->size(); i++) (*this)[i] *= inv; return *this; } Formal_Power_Series &operator /= (const Formal_Power_Series &v){ if(v.size() > this->size()){ this->clear(); return *this; } int n = this->size()-sz(v)+1; return *this = (rev().pre(n)*v.rev().inv(n)).pre(n).rev(); } Formal_Power_Series &operator %= (const Formal_Power_Series &v){ return *this -= (*this/v)*v; } Formal_Power_Series &operator <<= (int x){ Formal_Power_Series ret(x, 0); ret.insert(end(ret), begin(*this), end(*this)); return *this = ret; } Formal_Power_Series &operator >>= (int x){ Formal_Power_Series ret; ret.insert(end(ret), begin(*this)+x, end(*this)); return *this = ret; } Formal_Power_Series operator + (const T &x) const {return Formal_Power_Series(*this) += x;} Formal_Power_Series operator + (const Formal_Power_Series &v) const {return Formal_Power_Series(*this) += v;} Formal_Power_Series operator - (const T &x) const {return Formal_Power_Series(*this) -= x;} Formal_Power_Series operator - (const Formal_Power_Series &v) const {return Formal_Power_Series(*this) -= v;} Formal_Power_Series operator * (const T &x) const {return Formal_Power_Series(*this) *= x;} Formal_Power_Series operator * (const Formal_Power_Series &v) const {return Formal_Power_Series(*this) *= v;} Formal_Power_Series operator / (const T &x) const {return Formal_Power_Series(*this) /= x;} Formal_Power_Series operator / (const Formal_Power_Series &v) const {return Formal_Power_Series(*this) /= v;} Formal_Power_Series operator % (const Formal_Power_Series &v) const {return Formal_Power_Series(*this) %= v;} Formal_Power_Series operator << (int x) const {return Formal_Power_Series(*this) <<= x;} Formal_Power_Series operator >> (int x) const {return Formal_Power_Series(*this) >>= x;} T val(const T &x) const{ T ret = 0; for(int i = (int)this->size()-1; i >= 0; i--) ret *= x, ret += (*this)[i]; return ret; } Formal_Power_Series diff() const{ // df/dx int n = this->size(); Formal_Power_Series ret(n-1); for(int i = 1; i < n; i++) ret[i-1] = (*this)[i]*i; return ret; } Formal_Power_Series integral() const{ // ∫fdx int n = this->size(); Formal_Power_Series ret(n+1); for(int i = 0; i < n; i++) ret[i+1] = (*this)[i]/(i+1); return ret; } Formal_Power_Series inv(int deg) const{ // 1/f (f[0] != 0) assert((*this)[0] != T(0)); Formal_Power_Series ret(1, (*this)[0].inverse()); for(int i = 1; i < deg; i <<= 1){ Formal_Power_Series f = pre(2*i), g = ret; NTT.ntt(f, 2*i), NTT.ntt(g, 2*i); Formal_Power_Series h(2*i); for(int j = 0; j < 2*i; j++) h[j] = f[j]*g[j]; NTT.intt(h, 2*i); for(int j = 0; j < i; j++) h[j] = 0; NTT.ntt(h, 2*i); for(int j = 0; j < 2*i; j++) h[j] *= g[j]; NTT.intt(h, 2*i); for(int j = 0; j < i; j++) h[j] = 0; ret -= h; //ret = (ret+ret-ret*ret*pre(i<<1)).pre(i<<1); } ret.resize(deg); return ret; } Formal_Power_Series inv() const {return inv(this->size());} Formal_Power_Series log(int deg) const{ // log(f) (f[0] = 1) assert((*this)[0] == 1); Formal_Power_Series ret = (diff()*inv(deg)).pre(deg-1).integral(); ret.resize(deg); return ret; } Formal_Power_Series log() const {return log(this->size());} Formal_Power_Series exp(int deg) const{ // exp(f) (f[0] = 0) assert((*this)[0] == 0); Formal_Power_Series ret(1, 1); for(int i = 1; i < deg; i <<= 1){ ret = (ret*(pre(i<<1)+1-ret.log(i<<1))).pre(i<<1); } ret.resize(deg); return ret; } Formal_Power_Series exp() const {return exp(this->size());} Formal_Power_Series pow(long long k, int deg) const{ // f^k int n = this->size(); for(int i = 0; i < n; i++){ if((*this)[i] == 0) continue; T rev = (*this)[i].inverse(); Formal_Power_Series C(*this*rev), D(n-i, 0); for(int j = i; j < n; j++) D[j-i] = C[j]; D = (D.log()*k).exp()*((*this)[i].pow(k)); Formal_Power_Series E(deg, 0); if(i > 0 && k > deg/i) return E; long long S = i*k; for(int j = 0; j+S < deg && j < D.size(); j++) E[j+S] = D[j]; E.resize(deg); return E; } return Formal_Power_Series(deg, 0); } Formal_Power_Series pow(long long k) const {return pow(k, this->size());} }; using fps = Formal_Power_Series<998244353, 3>; int main(){ ll N; int Q; cin >> N >> Q; vector<vector<mint>> dp(101, vector<mint>(3001, 0)); rep2(i, 0, 100){ if(i > N) break; dp[i][0] = 1; rep(j, 3000){ dp[i][j+1] = dp[i][j]*(N-i+j)/(j+1); } rep(j, 3000){ dp[i][j+1] += dp[i][j]; } } map<int, vector<mint>> mp; fps f(3000, 0); f[0] = 1; while(Q--){ int K, A, B, S, T; cin >> K >> A >> B >> S >> T; if(mp.count(K)){ auto &e = mp[K]; f *= fps(e).inv(); f.resize(3001); rep2(i, A, B) e[i] = 0; f *= e; f.resize(3001); } else{ vector<mint> g(3001, 1); rep2(i, A, B) g[i] = 0; f *= g; f.resize(3001); mp[K] = g; } int n = mp.size(); mint ans = 0; rep2(i, 0, T){ ans += f[i]*dp[n][T-i]; if(i < S) ans -= f[i]*dp[n][S-1-i]; } cout << ans << '\n'; } }