結果

問題 No.1641 Tree Xor Query
ユーザー 👑 tute7627tute7627
提出日時 2021-08-06 21:26:22
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 13,798 bytes
コンパイル時間 2,687 ms
コンパイル使用メモリ 221,516 KB
実行使用メモリ 21,888 KB
最終ジャッジ日時 2024-09-17 01:17:43
合計ジャッジ時間 3,442 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 2 ms
6,940 KB
testcase_03 WA -
testcase_04 WA -
testcase_05 WA -
testcase_06 WA -
testcase_07 WA -
testcase_08 AC 2 ms
6,940 KB
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 WA -
testcase_14 WA -
testcase_15 WA -
testcase_16 WA -
testcase_17 WA -
testcase_18 WA -
testcase_19 WA -
testcase_20 WA -
権限があれば一括ダウンロードができます

ソースコード

diff #

//#define _GLIBCXX_DEBUG

#include<bits/stdc++.h>
using namespace std;

#define endl '\n'
#define lfs cout<<fixed<<setprecision(10)
#define ALL(a)  (a).begin(),(a).end()
#define ALLR(a)  (a).rbegin(),(a).rend()
#define UNIQUE(a) (a).erase(unique((a).begin(),(a).end()),(a).end())
#define spa << " " <<
#define fi first
#define se second
#define MP make_pair
#define MT make_tuple
#define PB push_back
#define EB emplace_back
#define rep(i,n,m) for(ll i = (n); i < (ll)(m); i++)
#define rrep(i,n,m) for(ll i = (ll)(m) - 1; i >= (ll)(n); i--)
using ll = long long;
using ld = long double;
const ll MOD1 = 1e9+7;
const ll MOD9 = 998244353;
const ll INF = 1e18;
using P = pair<ll, ll>;
template<typename T> using PQ = priority_queue<T>;
template<typename T> using QP = priority_queue<T,vector<T>,greater<T>>;
template<typename T1, typename T2>bool chmin(T1 &a,T2 b){if(a>b){a=b;return true;}else return false;}
template<typename T1, typename T2>bool chmax(T1 &a,T2 b){if(a<b){a=b;return true;}else return false;}
ll median(ll a,ll b, ll c){return a+b+c-max({a,b,c})-min({a,b,c});}
void ans1(bool x){if(x) cout<<"Yes"<<endl;else cout<<"No"<<endl;}
void ans2(bool x){if(x) cout<<"YES"<<endl;else cout<<"NO"<<endl;}
void ans3(bool x){if(x) cout<<"Yay!"<<endl;else cout<<":("<<endl;}
template<typename T1,typename T2>void ans(bool x,T1 y,T2 z){if(x)cout<<y<<endl;else cout<<z<<endl;}  
template<typename T1,typename T2,typename T3>void anss(T1 x,T2 y,T3 z){ans(x!=y,x,z);};  
template<typename T>void debug(const T &v,ll h,ll w,string sv=" "){for(ll i=0;i<h;i++){cout<<v[i][0];for(ll j=1;j<w;j++)cout<<sv<<v[i][j];cout<<endl;}};
template<typename T>void debug(const T &v,ll n,string sv=" "){if(n!=0)cout<<v[0];for(ll i=1;i<n;i++)cout<<sv<<v[i];cout<<endl;};
template<typename T>void debug(const vector<T>&v){debug(v,v.size());}
template<typename T>void debug(const vector<vector<T>>&v){for(auto &vv:v)debug(vv,vv.size());}
template<typename T>void debug(stack<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(queue<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(deque<T> st){while(!st.empty()){cout<<st.front()<<" ";st.pop_front();}cout<<endl;}
template<typename T>void debug(PQ<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(QP<T> st){while(!st.empty()){cout<<st.top()<<" ";st.pop();}cout<<endl;}
template<typename T>void debug(const set<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
template<typename T>void debug(const multiset<T>&v){for(auto z:v)cout<<z<<" ";cout<<endl;}
template<typename T,size_t size>void debug(const array<T, size> &a){for(auto z:a)cout<<z<<" ";cout<<endl;}
template<typename T,typename V>void debug(const map<T,V>&v){for(auto z:v)cout<<"["<<z.first<<"]="<<z.second<<",";cout<<endl;}
template<typename T>vector<vector<T>>vec(ll x, ll y, T w){vector<vector<T>>v(x,vector<T>(y,w));return v;}
ll gcd(ll x,ll y){ll r;while(y!=0&&(r=x%y)!=0){x=y;y=r;}return y==0?x:y;}
vector<ll>dx={1,-1,0,0,1,1,-1,-1};vector<ll>dy={0,0,1,-1,1,-1,1,-1};
template<typename T>vector<T> make_v(size_t a,T b){return vector<T>(a,b);}
template<typename... Ts>auto make_v(size_t a,Ts... ts){return vector<decltype(make_v(ts...))>(a,make_v(ts...));}
template<typename T1, typename T2>ostream &operator<<(ostream &os, const pair<T1, T2>&p){return os << p.first << " " << p.second;}
template<typename T>ostream &operator<<(ostream &os, const vector<T> &v){for(auto &z:v)os << z << " ";cout<<"|"; return os;}
template<typename T>void rearrange(vector<int>&ord, vector<T>&v){
  auto tmp = v;
  for(int i=0;i<tmp.size();i++)v[i] = tmp[ord[i]];
}
template<typename Head, typename... Tail>void rearrange(vector<int>&ord,Head&& head, Tail&&... tail){
  rearrange(ord, head);
  rearrange(ord, tail...);
}
template<typename T> vector<int> ascend(const vector<T>&v){
  vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
  sort(ord.begin(),ord.end(),[&](int i,int j){return v[i]<v[j];});
  return ord;
}
template<typename T> vector<int> descend(const vector<T>&v){
  vector<int>ord(v.size());iota(ord.begin(),ord.end(),0);
  sort(ord.begin(),ord.end(),[&](int i,int j){return v[i]>v[j];});
  return ord;
}
ll FLOOR(ll n,ll div){return n>=0?n/div:(n-div+1)/div;}
ll CEIL(ll n,ll div){return n>=0?(n+div-1)/div:n/div;}
ll digitsum(ll n){ll ret=0;while(n){ret+=n%10;n/=10;}return ret;}
template<typename T>T min(const vector<T>&v){return *min_element(v.begin(),v.end());}
template<typename T>T max(const vector<T>&v){return *max_element(v.begin(),v.end());}
template<typename T>T acc(const vector<T>&v){return accumulate(v.begin(),v.end(),T(0));};
template<typename T>T reverse(const T &v){return T(v.rbegin(),v.rend());};
//mt19937 mt(chrono::steady_clock::now().time_since_epoch().count());
int popcount(ll x){return __builtin_popcountll(x);};
int poplow(ll x){return __builtin_ctzll(x);};
int pophigh(ll x){return 63 - __builtin_clzll(x);};
template<typename T>T poll(queue<T> &q){auto ret=q.front();q.pop();return ret;};
template<typename T>T poll(priority_queue<T> &q){auto ret=q.top();q.pop();return ret;};
template<typename T>T poll(QP<T> &q){auto ret=q.top();q.pop();return ret;};
template<typename T>T poll(stack<T> &s){auto ret=s.top();s.pop();return ret;};
template< typename T = int >
struct edge {
  int to;
  T cost;
  int id;
  edge():id(-1){};
  edge(int to, T cost = 1, int id = -1):to(to), cost(cost), id(id){}
  operator int() const { return to; }
};

template<typename T>
using Graph = vector<vector<edge<T>>>;
template<typename T>
Graph<T>revgraph(const Graph<T> &g){
  Graph<T>ret(g.size());
  for(int i=0;i<g.size();i++){
    for(auto e:g[i]){
      int to = e.to;
      e.to = i;
      ret[to].push_back(e);
    }
  }
  return ret;
}
template<typename T>
Graph<T> readGraph(int n,int m,int indexed=1,bool directed=false,bool weighted=false){
  Graph<T> ret(n);
  for(int es = 0; es < m; es++){
    int u,v;
    T w=1;
    cin>>u>>v;u-=indexed,v-=indexed;
    if(weighted)cin>>w;
    ret[u].emplace_back(v,w,es);
    if(!directed)ret[v].emplace_back(u,w,es);
  }
  return ret;
}
template<typename T>
Graph<T> readParent(int n,int indexed=1,bool directed=true){
  Graph<T>ret(n);
  for(int i=1;i<n;i++){
    int p;cin>>p;
    p-=indexed;
    ret[p].emplace_back(i);
    if(!directed)ret[i].emplace_back(p);
  }
  return ret;
}
template<typename T>
struct HLD{
  using D=long long;
  int n;
  vector<int>sz;//部分木サイズ
  vector<D>dep;
  vector<int>par;
  vector<int>head;
  Graph<T> &g;//隣接リスト
  vector<edge<T>>edges;//データ構造に乗せるedge列
  vector<int>in,out;//[in,out)で部分木、[ina,inb]でa~bのパス(aが上)
  vector<int>comp;//連結成分の根
  //inは頂点のindexを表す。また、edge列の下側の頂点である
  HLD(Graph<T> &g,int r=-1):g(g),n(g.size()){
    hld_build(r);
  }
  void hld_build(int root = -1){
    in.assign(n,-1);out.assign(n,-1);dep.assign(n,0);
    par.assign(n,-1);head.assign(n,-1);sz.assign(n,-1);comp.assign(n,-1);
    edges.assign(n,edge<T>());
    if(root == -1){//根がどこでも良い場合(森でも可)
      for(int i=0;i<n;i++){
        if(sz[i] == -1){
          head[i] = i;
          dfs_sz(i, 0, i);
          dfs_hld(i);
        }
      }
    }
    else{
      head[root] = root;
      dfs_sz(root, 0, root);
      dfs_hld(root);
    }
  }
  void dfs_sz(int k, D d,int r){
    sz[k] = 1;
    comp[k] = r;
	dep[k] = d;
    for(auto &e: g[k]){
      if(e.to == par[k])continue;
      par[e.to] = k;
      dfs_sz(e.to, d+e.cost, r);
      sz[k] += sz[e.to];
      if(sz[e.to] > sz[g[k][0].to])swap(e, g[k][0]);
    }
  }
  int time = 0;
  void dfs_hld(int k){
    in[k] = time++;
    for(auto e:g[k]){
      if(e.to == par[k])continue;
      head[e.to] = (e.to == g[k][0].to ? head[k]: e.to);
      edges[time] = e;
      dfs_hld(e.to);
    }
    out[k] = time;
  }
  int lca(int p,int q){
    while(1){
      if(in[p] < in[q])swap(p,q);
      if(head[p] == head[q])return q;
      p = par[head[p]];
    }
  }
  vector<pair<int,int>>query_path(int p,int q,bool isEdge){
    int r=lca(p,q);
    vector<pair<int,int>>ret;
    for(int i=0;i<2;i++){
      if(i == 1)swap(p,q);
      while(1){
        if(isEdge&&p==r)break;
        if(head[p]==head[r]){
          ret.emplace_back(in[r]+(isEdge?1:i),in[p]+1);
          break;
        }
        ret.emplace_back(in[head[p]],in[p]+1);
        p = par[head[p]];
      }
    }
    return ret;
  }
  vector<vector<pair<int,int>>>query_order_path(int p,int q,bool isEdge){
	//非可換クエリ用、配列0を順番を反転したデータ構造に、配列1を通常のデータ構造に
    vector<vector<pair<int,int>>>ret(2);
    int r=lca(p,q);
    for(int i=0;i<2;i++){
      if(i == 1)swap(p,q);
      while(1){
        if(isEdge&&p==r)break;
        if(head[p]==head[r]){
          if(i==0) ret[i].emplace_back(n-(in[p]+1),n-(in[r]+(isEdge?1:i)));
          else ret[i].emplace_back(in[r]+(isEdge?1:i),in[p]+1);
          break;
        }
        if(i==0) ret[i].emplace_back(n-(in[p]+1),n-(in[head[p]]));
        else ret[i].emplace_back(in[head[p]],in[p]+1);
        p = par[head[p]];
      }
    }
    reverse(ret[1].begin(), ret[1].end());
    return ret;
  }
  pair<int,int>query_subtree(int p,bool isEdge){
    return make_pair(in[p]+isEdge,out[p]);
  }
  //uのv方向の子 子孫関係は前もって確認すること(in,outを見る)
  int child(int u,int v){
    while(1){
      if(head[u]==head[v]){
        v=g[u][0].to;
        break;
      }
      v=head[v];
      if(par[v]==u)break;
      v=par[v];
    }
    return v;
  }
  //uをv方向に一つ進めた頂点
  int move(int u,int v){
    assert(u!=v);
    if(in[u]<in[v]&&in[v]<out[u])return child(u,v);
    else return par[u];
  }
  D dist(int u,int v){
    return dep[u]+dep[v]-2*dep[lca(u,v)];
  }
  vector<int>rev_in;
  int climb(int u,int k){
    if(rev_in.empty()){
      rev_in.resize(n);
      for(int i=0;i<n;i++)rev_in[in[i]]=i;
    }
    int nd=max<int>(dep[u]-k, 0);
    while(dep[u]>nd){
      if(dep[head[u]]>nd){
        u=par[head[u]];
      }
      else{
        u=rev_in[in[head[u]]+nd-dep[head[u]]];
      }
    }
    return u;
  }
  template<typename I>
  Graph<T>lca_tree(vector<I>&v){
    auto compare=[&](int x,int y){return in[x]<in[y];};
    sort(v.begin(),v.end(),compare);
    int sz1=v.size();
    for(int i=0;i<sz1-1;i++)v.push_back(lca(v[i],v[i+1]));
    sort(v.begin(),v.end(),compare);
    v.erase(unique(v.begin(),v.end()),v.end());
    int sz2=v.size();
    Graph<T>ret(sz2);
    stack<int>st;
    for(int i=0;i<sz2;i++){
      while(!st.empty()&&out[v[st.top()]]<=in[v[i]])st.pop();
      if(!st.empty())ret[st.top()].emplace_back(i,dep[v[i]]-dep[v[st.top()]]);
      st.push(i);
    }
    return ret;
  }
};
template< typename Monoid ,typename F>
struct SegmentTree {
  int sz, n;
  vector< Monoid > seg;
  const F f;
  const Monoid M1;

  SegmentTree(int n, const F f, const Monoid &M1) : f(f), M1(M1), n(n){
    sz = 1;
    while(sz < n) sz <<= 1;
    seg.assign(2 * sz, M1);
  }

  void set(int k, const Monoid &x) {
    seg[k + sz] = x;
  }

  void build() {
    for(int k = sz - 1; k > 0; k--) {
      seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
    }
  }

  void update(int k, const Monoid &x) {
    k += sz;
    seg[k] = x;
    while(k >>= 1) {
      seg[k] = f(seg[2 * k + 0], seg[2 * k + 1]);
    }
  }

  Monoid query(int a, int b) {
	  if(a>=b)return M1;
    Monoid L = M1, R = M1;
    for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
      if(a & 1) L = f(L, seg[a++]);
      if(b & 1) R = f(seg[--b], R);
    }
    return f(L, R);
  }

  Monoid operator[](const int &k) const {
    return seg[k + sz];
  }

  template< typename C >
  int find_subtree(int a, const C &check, Monoid &M, bool type) {
    while(a < sz) {
      Monoid nxt = type ? f(seg[2 * a + type], M) : f(M, seg[2 * a + type]);
      if(check(nxt)) a = 2 * a + type;
      else M = nxt, a = 2 * a + 1 - type;
    }
    return a - sz;
  }
  //[a,x]が条件を満たす最初のx,満たさなければ-1
  template< typename C >
  int find_first(int a, const C &check) {
    Monoid L = M1;
    if(a <= 0) {
      if(check(f(L, seg[1]))) return find_subtree(1, check, L, false);
      return -1;
    }
    int b = sz;
    for(a += sz, b += sz; a < b; a >>= 1, b >>= 1) {
      if(a & 1) {
        Monoid nxt = f(L, seg[a]);
        if(check(nxt)) return find_subtree(a, check, L, false);
        L = nxt;
        ++a;
      }
    }
    return -1;
  }
  //[x,b)が条件を満たす最後のx,満たさなければ-1
  template< typename C >
  int find_last(int b, const C &check) {
    Monoid R = M1;
    if(b >= sz) {
      if(check(f(seg[1], R))) return find_subtree(1, check, R, true);
      return -1;
    }
    int a = sz;
    for(b += sz; a < b; a >>= 1, b >>= 1) {
      if(b & 1) {
        Monoid nxt = f(seg[--b], R);
        if(check(nxt)) return find_subtree(b, check, R, true);
        R = nxt;
      }
    }
    return -1;
  }
  void print(){
    for(ll i=0;i<n;i++)if((*this)[i]==M1)cout<<"x ";else cout<<(*this)[i]<<" ";
    cout<<endl;
  }
};
namespace range_xor{
  using M=ll;
  auto f=[](M x,M y){
    return x^y;
  };
  SegmentTree<M,decltype(f)>make(int n){
    return {n,f,0};
  }
}
int main(){
  cin.tie(nullptr);
  ios_base::sync_with_stdio(false);
  ll res=0,buf=0;
  bool judge = true;
  ll n,q;cin>>n>>q;
  auto seg=range_xor::make(n);
  vector<ll>c(n);
  rep(i,0,n)cin>>c[i];

  seg.build();
  auto g=readGraph<int>(n,n-1);
  HLD hld(g);
  rep(i,0,n){
    seg.set(hld.in[i],c[i]);
  }
  while(q--){
    ll t,x,y;cin>>t>>x>>y;x--;
    if(t==1){
      seg.update(hld.in[x],seg[hld.in[x]]^y);
    }
    else{
      cout<<seg.query(hld.in[x],hld.out[x])<<endl;;
    }
  }
  return 0;
}
0