結果
| 問題 | 
                            No.1164 GCD Products hard
                             | 
                    
| ユーザー | 
                             vwxyz
                         | 
                    
| 提出日時 | 2021-08-10 00:08:25 | 
| 言語 | PyPy3  (7.3.15)  | 
                    
| 結果 | 
                             
                                TLE
                                 
                             
                            
                         | 
                    
| 実行時間 | - | 
| コード長 | 3,079 bytes | 
| コンパイル時間 | 183 ms | 
| コンパイル使用メモリ | 82,128 KB | 
| 実行使用メモリ | 181,956 KB | 
| 最終ジャッジ日時 | 2024-09-22 00:58:56 | 
| 合計ジャッジ時間 | 7,620 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge1 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | -- * 2 | 
| other | TLE * 1 -- * 26 | 
ソースコード
import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
    heap.append(item)
    heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
    if heap and item < heap[0]:
        item, heap[0] = heap[0], item
        heapq._siftup_max(heap, 0)
    return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines
class Prime:
    def __init__(self,N):
        assert N<=10**8
        self.smallest_prime_factor=[None]*(N+1)
        for i in range(2,N+1,2):
            self.smallest_prime_factor[i]=2
        n=int(N**.5)+1
        for p in range(3,n,2):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
                for i in range(p**2,N+1,2*p):
                    if self.smallest_prime_factor[i]==None:
                        self.smallest_prime_factor[i]=p
        for p in range(n,N+1):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
        self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]
    def Factorize(self,N):
        assert N>=1
        factorize=defaultdict(int)
        if N<=len(self.smallest_prime_factor)-1:
            while N!=1:
                factorize[self.smallest_prime_factor[N]]+=1
                N//=self.smallest_prime_factor[N]
        else:
            for p in self.primes:
                while N%p==0:
                    N//=p
                    factorize[p]+=1
                if N<p*p:
                    if N!=1:
                        factorize[N]+=1
                    break
                if N<=len(self.smallest_prime_factor)-1:
                    while N!=1:
                        factorize[self.smallest_prime_factor[N]]+=1
                        N//=self.smallest_prime_factor[N]
                    break
            else:
                if N!=1:
                    factorize[N]+=1
        return factorize
    def Divisors(self,N):
        assert N>0
        divisors=[1]
        for p,e in self.Factorize(N).items():
            A=[1]
            for _ in range(e):
                A.append(A[-1]*p)
            divisors=[i*j for i in divisors for j in A]
        return divisors
    def Is_Prime(self,N):
        return N==self.smallest_prime_factor[N]
    def Totient(self,N):
        for p in self.Factorize(N).keys():
            N*=p-1
            N//=p
        return N
A,B,N=map(int,readline().split())
cnt=[0]*(10**7+1)
mod=10**9+7
for i in range(1,10**7+1):
    cnt[i]=pow((B//i-(A-1)//i),N,mod-1)
P=Prime(10**7)
ans=1
for p in P.primes:
    for i in range(p,10**7+1,p):
        cnt[i//p]-=cnt[i]
        cnt[i//p]%=mod-1
for i in range(1,10**7+1):
    ans*=pow(i,cnt[i],mod)
    ans%=mod
ans%=10**9+7
print(ans)
            
            
            
        
            
vwxyz