結果

問題 No.1164 GCD Products hard
ユーザー vwxyzvwxyz
提出日時 2021-08-10 00:31:34
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,179 ms / 2,500 ms
コード長 3,027 bytes
コンパイル時間 285 ms
コンパイル使用メモリ 82,376 KB
実行使用メモリ 214,908 KB
最終ジャッジ日時 2024-09-22 01:27:00
合計ジャッジ時間 27,865 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 959 ms
214,528 KB
testcase_01 AC 1,128 ms
214,644 KB
testcase_02 AC 970 ms
214,476 KB
testcase_03 AC 728 ms
214,760 KB
testcase_04 AC 697 ms
214,624 KB
testcase_05 AC 1,000 ms
214,604 KB
testcase_06 AC 1,114 ms
214,700 KB
testcase_07 AC 1,080 ms
214,592 KB
testcase_08 AC 1,020 ms
214,492 KB
testcase_09 AC 929 ms
214,424 KB
testcase_10 AC 731 ms
214,548 KB
testcase_11 AC 996 ms
214,620 KB
testcase_12 AC 1,131 ms
214,508 KB
testcase_13 AC 895 ms
214,908 KB
testcase_14 AC 730 ms
214,428 KB
testcase_15 AC 1,081 ms
214,536 KB
testcase_16 AC 832 ms
214,700 KB
testcase_17 AC 1,020 ms
214,632 KB
testcase_18 AC 957 ms
214,420 KB
testcase_19 AC 693 ms
214,440 KB
testcase_20 AC 812 ms
214,416 KB
testcase_21 AC 1,163 ms
214,616 KB
testcase_22 AC 610 ms
214,360 KB
testcase_23 AC 609 ms
214,336 KB
testcase_24 AC 1,179 ms
214,696 KB
testcase_25 AC 594 ms
214,376 KB
testcase_26 AC 593 ms
214,528 KB
testcase_27 AC 597 ms
214,416 KB
testcase_28 AC 606 ms
214,452 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
    heap.append(item)
    heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
    if heap and item < heap[0]:
        item, heap[0] = heap[0], item
        heapq._siftup_max(heap, 0)
    return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines

class Prime:
    def __init__(self,N):
        assert N<=10**8
        self.smallest_prime_factor=[None]*(N+1)
        for i in range(2,N+1,2):
            self.smallest_prime_factor[i]=2
        n=int(N**.5)+1
        for p in range(3,n,2):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
                for i in range(p**2,N+1,2*p):
                    if self.smallest_prime_factor[i]==None:
                        self.smallest_prime_factor[i]=p
        for p in range(n,N+1):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
        self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]

    def Factorize(self,N):
        assert N>=1
        factorize=defaultdict(int)
        if N<=len(self.smallest_prime_factor)-1:
            while N!=1:
                factorize[self.smallest_prime_factor[N]]+=1
                N//=self.smallest_prime_factor[N]
        else:
            for p in self.primes:
                while N%p==0:
                    N//=p
                    factorize[p]+=1
                if N<p*p:
                    if N!=1:
                        factorize[N]+=1
                    break
                if N<=len(self.smallest_prime_factor)-1:
                    while N!=1:
                        factorize[self.smallest_prime_factor[N]]+=1
                        N//=self.smallest_prime_factor[N]
                    break
            else:
                if N!=1:
                    factorize[N]+=1
        return factorize

    def Divisors(self,N):
        assert N>0
        divisors=[1]
        for p,e in self.Factorize(N).items():
            A=[1]
            for _ in range(e):
                A.append(A[-1]*p)
            divisors=[i*j for i in divisors for j in A]
        return divisors

    def Is_Prime(self,N):
        return N==self.smallest_prime_factor[N]

    def Totient(self,N):
        for p in self.Factorize(N).keys():
            N*=p-1
            N//=p
        return N

@lru_cache(maxsize=None)
def p(c):
    return pow(c,N,mod)
A,B,N=map(int,readline().split())
mod=10**9+7
P=Prime(10**7)
ans=1
for p in P.primes:
    pp=p
    c=B//p-(A-1)//p
    while c:
        ans*=pow(p,pow(c,N,mod-1),mod)
        ans%=mod
        pp*=p
        c=B//pp-(A-1)//pp
print(ans)
0