結果
| 問題 |
No.898 tri-βutree
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-08-11 15:14:28 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 12,190 bytes |
| コンパイル時間 | 4,285 ms |
| コンパイル使用メモリ | 243,376 KB |
| 実行使用メモリ | 34,832 KB |
| 最終ジャッジ日時 | 2024-09-25 02:02:38 |
| 合計ジャッジ時間 | 16,181 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 1 WA * 20 |
ソースコード
#ifndef HIDDEN_IN_VISUAL_STUDIO // 無意味.折りたたむのが目的.
// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS
// 使えるライブラリの読み込み
#include <bits/stdc++.h>
#include <functional> // function
using namespace std;
// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18
using ull = unsigned long long; // 0 ~ 2^64 = 1.8 * 10^19
using uint = unsigned int; // 0 ~ 2^32 = 4 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>;
using vll = vector<ll>; using vvll = vector<vll>; using vvvll = vector<vvll>;
using vb = vector<bool>; using vvb = vector<vb>;
using vc = vector<char>; using vvc = vector<vc>;
// 定数の定義
const double PI = 3.141592653589793238462643383279; // 円周率
const double DEG = PI / 180.0; // θ [deg] = θ * DEG [rad]
const vector<int> dx4 = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vector<int> dy4 = { 0, 1, 0, -1 };
const vector<int> dx8 = { 1, 1, 0, -1, -1, -1, 0, 1 }; // 8 近傍
const vector<int> dy8 = { 0, 1, 1, 1, 0, -1, -1, -1 };
const ll INFL = (ll)1e18; const int INF = (int)1e9;
const double EPS = 1e-10; // 許容誤差に応じて調整
// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(i, a) for(const auto& i : (a)) // a の全要素
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repbm(mid, set, d) for(int mid = set; mid < (1 << int(d)); mid = (mid + 1) | set) // set を含む部分集合の全探索(昇順)
#define repbs(sub, set) for (int sub = set, bsub = 1; bsub > 0; bsub = sub, sub = (sub - 1) & set) // set の部分集合の全探索(降順)
#define repbc(set, k, d) for (int set = (1 << k) - 1, lb, nx; set < (1 << n); lb = set & -set, nx = set + lb, set = (((set & ~nx) / lb) >> 1) | nx) // 大きさ k の部分集合の全探索
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define repit(it, a) for(auto it = (a).begin(); it != (a).end(); ++it) // イテレータを回す(昇順)
#define repitr(it, a) for(auto it = (a).rbegin(); it != (a).rend(); ++it) // イテレータを回す(降順)
#define Yes(b) if(b){cout << "Yes" << endl;}else{cout << "No" << endl;}
// 汎用関数の定義
inline ll pow(ll n, int k) { ll v = 1; rep(i, k) v *= n; return v; } // 工夫が必要なほど k が大きかったらどうせオーバーフローするからこれでいい
inline ll pow(int n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
// 入出力用の >>, << のオーバーロード
template <class T, class U> inline istream& operator>> (istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } // pair の入力用
template <class T, class U> inline ostream& operator<< (ostream& os, const pair<T, U>& p) { os << "(" << p.first << "," << p.second << ")"; return os; } // pair の出力用
template <class T, class U, class V> inline istream& operator>> (istream& is, tuple<T, U, V>& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t); return is; } // tuple の入力用
template <class T, class U, class V> inline ostream& operator<< (ostream& os, const tuple<T, U, V>& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << ")"; return os; } // tuple の出力用
template <class T, class U, class V, class W> inline istream& operator>> (istream& is, tuple<T, U, V, W>& t) { is >> get<0>(t) >> get<1>(t) >> get<2>(t) >> get<3>(t); return is; } // tuple の入力用
template <class T, class U, class V, class W> inline ostream& operator<< (ostream& os, const tuple<T, U, V, W>& t) { os << "(" << get<0>(t) << "," << get<1>(t) << "," << get<2>(t) << "," << get<3>(t) << ")"; return os; } // tuple の出力用
template <class T> inline istream& operator>> (istream& is, vector<T>& v) { rep(i, sz(v)) is >> v[i]; return is; } // vector の入力用
template <class T> inline ostream& operator<< (ostream& os, const vector<T>& v) { rep(i, sz(v)) os << v[i] << " "; return os; } // vector の出力用
template <class T> inline ostream& operator<< (ostream& os, const set<T>& s) { repe(x, s) os << x << " "; return os; } // set の出力用
// 手元環境(Visual Studio)
#ifdef _MSC_VER
#define popcount (int)__popcnt // 全ビットにおける 1 の個数
#define popcountll (int)__popcnt64
inline int ctz(uint n) { unsigned long i; _BitScanForward(&i, n); return i; } // 下位ビットに並ぶ 0 の個数
ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } // 最大公約数
#define dump(x) cerr << "[DEBUG] " << endl << x << endl; // デバッグ出力用
#define dumpel(v) cerr << "[DEBUG]" << endl; for (const auto& x : v) {cout << x << endl;}
// 提出用(GCC)
#else
#define popcount (int)__builtin_popcount
#define popcountll (int)__builtin_popcountll
#define ctz __builtin_ctz
#define gcd __gcd
#define dump(x)
#define dumpel(v)
#endif
#endif // 無意味.折りたたむのが目的.
// AtCoder 専用
#include <atcoder/all>
using namespace atcoder;
// mint で使いたい法によってここを切り替える
using mint = modint1000000007;
//using mint = modint998244353;
//using mint = modint; // modint::set_mod(10000); // mint の法の指定
istream& operator>> (istream& is, mint& x) { ll tmp; is >> tmp; x = tmp; return is; } // mint の入力用
ostream& operator<< (ostream& os, const mint& x) { os << x.val(); return os; } // mint の出力用
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;
//【コスト付きグラフの辺】
struct Edge {
int to; // 行き先の頂点番号
ll cost; // 辺のコスト
// 出力
friend ostream& operator<<(ostream& os, const Edge& e) {
os << '(' << e.to << ',' << e.cost << ')';
return os;
}
};
//【コスト付き根付き木のノード】
struct WTNode {
int parent = -1; // 親(なければ -1)
vector<Edge> child; // 子への辺(なければ空リスト)
ll depth = -1; // 深さ(根からのパスのコスト)
ll height = -1; // 高さ(最もコストの高い葉へのパスのコスト)
// 出力
friend ostream& operator<<(ostream& os, const WTNode& v) {
os << '(' << v.parent << ',' << v.child << ',' << v.depth << ',' << v.height << ')';
return os;
}
};
//【コスト付き無向グラフの構築】O(|E|)
/*
* 入力を受け取り n 頂点 m 辺のコスト付き有向グラフを構成する.
* g[i] : 頂点 i から出る辺(行き先とコストの組)のリスト
*/
void create_waighted_undirected_graph(int n, int m, vector<vector<Edge>>& g) {
g = vector<vector<Edge>>(n);
rep(i, m) {
int a, b;
ll c;
cin >> a >> b >> c;
g[a].push_back({ b, c });
g[b].push_back({ a, c });
}
}
//【コスト付き木 → コスト付き根付き木】O(|V|)
/*
* コスト付き木 g を根を r とするコスト付き根付き木 rt として再構築する.
* 親,子,深さ,高さの情報を正しく定める.
*/
void weighted_tree_to_weighted_rooted_tree(vector<vector<Edge>>& g, int r, vector<WTNode>& rt) {
int n = (int)g.size();
rt = vector<WTNode>(n); // コスト付き根付き木
// 再帰用の関数
// s : 注目ノード,p : s の親,d : s の深さ,戻り値:s の高さ
function<ll(int, int, ll)> dfs = [&](int s, int p, ll d) {
// 行きがけに s の親と深さを定める.
rt[s].parent = p;
rt[s].depth = d;
rt[s].height = 0;
repe(e, g[s]) {
if (e.to == p) {
continue;
}
// 通りがけに s の子を定める.
rt[s].child.push_back(e);
chmax(rt[s].height, dfs(e.to, s, d + e.cost) + e.cost);
}
return rt[s].height;
};
// 根 r を始点として再帰関数を呼び出す.
dfs(r, -1, 0);
}
//【コスト付き根付き木のオイラーツアー】O(|V|)
/*
* 根を r とする根付き木 rt のオイラーツアーを求める.
*
* in[i] : 最初に頂点 i を訪れた時刻(根なら 0)
* out[i] : 最後に頂点 i から離れた時刻(根なら 2 |V| - 1)
* time_to_pos[i] : 時刻 i に訪れた頂点の番号(長さ 2 |V| - 1)
*/
void euler_tour_wrt(vector<WTNode>& rt, int r, vi& in, vi& out, vi& time_to_pos) {
int n = (int)rt.size();
int time = 0;
in = vector<int>(n);
out = vector<int>(n);
time_to_pos = vector<int>(2 * n - 1);
// 再帰用の関数
function<void(int)> rf = [&](int s) {
// s を最初に訪れた
in[s] = time;
time_to_pos[time++] = s;
for (auto e : rt[s].child) {
rf(e.to);
time_to_pos[time++] = s;
}
// s から最後に離れる
out[s] = time;
};
// 根から順に探索する.
rf(r);
}
//【最小共通祖先】
/*
* 与えられた根付き木について,頂点対の最小共通祖先を求める.
*
* lowest_common_ancestor(g, r) : O(|V|)
* 木 g を根を r とみなして初期化する.
*
* get(a, b) : O(log |V|)
* a と b の最小共通祖先を返す.
*
* 利用:
* 【木 → 根付き木】
* 【根付き木のオイラーツアー】
*/
pii op1(pii a, pii b) { return min(a, b); } // segtree用
pii e1() { return { INF, -1 }; }
struct lowest_common_ancestor {
// rt : 根付き木,n : 大きさ,r : 根
vector<WTNode> rt;
int n;
int r;
// オイラーツアーの結果の記録用
// in[v] : v に最初に入った時刻
// out[v] : v から最後に出た時刻
// time_to_pos[t] : 時刻 t に居た頂点の番号
vector<int> in, out, time_to_pos;
// 深さに関する区間最小クエリを処理するためのセグメント木
// seg[t] : 時刻 t に居た頂点の (深さ, 番号)
segtree<pii, op1, e1> seg;
// コンストラクタ(木で初期化):O(|V|)
lowest_common_ancestor(vector<vector<Edge>>& g, int r_tmp) : n(sz(g)), r(r_tmp) {
// 木 g から r を根とする根付き木 rt を構築する.
rt = vector<WTNode>(n);
weighted_tree_to_weighted_rooted_tree(g, r, rt);
// オイラーツアーを求めておく.
euler_tour_wrt(rt, r, in, out, time_to_pos);
// 深さに関する区間最小クエリを処理するためのセグメント木を用意する.
// 深さだけでなく頂点の番号も返したいのでそれらを対にしてもつ.
vector<pii> depth(2 * n - 1);
rep(t, 2 * n - 1) {
depth[t] = { rt[time_to_pos[t]].depth, time_to_pos[t] };
}
seg = segtree<pii, op1, e1>(depth);
}
// 頂点対 (a, b) の最小共通祖先を返す:O(log |V|)
int get(int a, int b) {
// 初めて a または b に訪れたとき
int left = min(in[a], in[b]);
// 最後に a または b から離れたとき
int right = max(out[a], out[b]);
// その途中で訪れたことのある最も浅い頂点が最小共通祖先
return seg.prod(left, right).second;
}
};
int main() {
cout << fixed << setprecision(15); // 小数点以下の桁数の指定
int n;
cin >> n;
vector<vector<Edge>> g;
create_waighted_undirected_graph(n, n - 1, g);
lowest_common_ancestor lca(g, 0);
int q;
cin >> q;
rep(hoge, q) {
int x, y, z;
cin >> x >> y >> z;
int lca_xy = lca.get(x, y);
int lca_yz = lca.get(y, z);
int lca_zx = lca.get(z, x);
ll res = 0;
res += lca.rt[x].depth + lca.rt[y].depth - 2 * lca.rt[lca_xy].depth;
res += lca.rt[y].depth + lca.rt[z].depth - 2 * lca.rt[lca_yz].depth;
res += lca.rt[z].depth + lca.rt[x].depth - 2 * lca.rt[lca_zx].depth;
cout << res / 2 << endl;
}
}