結果

問題 No.1641 Tree Xor Query
ユーザー nebocconebocco
提出日時 2021-08-27 17:42:09
言語 Rust
(1.77.0)
結果
AC  
実行時間 45 ms / 5,000 ms
コード長 19,117 bytes
コンパイル時間 13,483 ms
コンパイル使用メモリ 402,008 KB
実行使用メモリ 17,940 KB
最終ジャッジ日時 2024-04-30 21:13:31
合計ジャッジ時間 14,881 ms
ジャッジサーバーID
(参考情報)
judge4 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,816 KB
testcase_01 AC 1 ms
6,812 KB
testcase_02 AC 1 ms
6,940 KB
testcase_03 AC 1 ms
6,940 KB
testcase_04 AC 1 ms
6,944 KB
testcase_05 AC 1 ms
6,940 KB
testcase_06 AC 1 ms
6,940 KB
testcase_07 AC 1 ms
6,944 KB
testcase_08 AC 1 ms
6,940 KB
testcase_09 AC 1 ms
6,944 KB
testcase_10 AC 1 ms
6,944 KB
testcase_11 AC 1 ms
6,940 KB
testcase_12 AC 1 ms
6,940 KB
testcase_13 AC 45 ms
17,512 KB
testcase_14 AC 44 ms
17,636 KB
testcase_15 AC 2 ms
6,944 KB
testcase_16 AC 4 ms
6,940 KB
testcase_17 AC 3 ms
6,940 KB
testcase_18 AC 3 ms
6,944 KB
testcase_19 AC 2 ms
6,940 KB
testcase_20 AC 37 ms
17,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

fn main() {
	let mut io = IO::new();
    input!{ from io,
		n: usize, q: usize,
		cl: [i32; n],
		ed: [(Usize1, Usize1); n-1],
		query: [(i32, Usize1, i32); q]
    }
    let mut hld = HeavyLightDecomposition::new(n);
    for (u, v) in ed {
        hld.add_edge(u, v);
    }
    hld.build(0);
    let mut bit = FenwickTree::new(n);
    for i in 0..n {
        bit.add(hld.id(i), Xor(cl[i]));
    }
    // io.iterln((0..n).map(|i| hld.id(i)), ", ");
    for &(t, x, y) in &query {
        if t == 1 {
            bit.add(hld.id(x), Xor(y));
            // io.iterln((0..n).map(|i| bit.sum(i..=i).0), ", ");
        } else {
            let rng = hld.subtree_range(x);
            // io.println((x, rng.start, rng.end));
            let v = bit.sum(rng);
            io.println(v.0)
        }
    }
}

#[derive(Clone, PartialEq)]
struct Xor(i32);

impl Add for Xor {
    type Output = Self;
    fn add(self, right: Self) -> Self {
        Xor(self.0 ^ right.0)
    }
}

impl Neg for Xor {
    type Output = Self;
    fn neg(self) -> Self { self }
}

impl Associative for Xor {}

impl Zero for Xor {
    fn zero() -> Self {
        Xor(0)
    }
    fn is_zero(&self) -> bool {
        self.0 == 0
    }
}

pub struct HeavyLightDecomposition {
    graph: Vec<Vec<usize>>,
    index: Vec<usize>,  // 新しい頂点番号
    parent: Vec<usize>, // 親
    head: Vec<usize>,   // 属するHeavy Pathの根
    range: Vec<usize>,  // 部分木の開区間右端
}

impl HeavyLightDecomposition {
    pub fn new(n: usize) -> Self {
        Self {
            graph: vec![Vec::new(); n],
            index: Vec::new(),
            parent: Vec::new(),
            head: Vec::new(),
            range: Vec::new(),
        }
    }

    pub fn add_edge(&mut self, u: usize, v: usize) {
        self.graph[u].push(v);
        self.graph[v].push(u);
    }

    pub fn build(&mut self, root: usize) {
        let graph = &mut self.graph;
        let n = graph.len();
        let mut index = vec![0; n];
        let mut parent = vec![n; n];
        let mut head = vec![root; n];
        let mut range = vec![0; n];
        let mut siz = vec![1; n];
        let mut st = Vec::new();
        st.push(root);
        while let Some(v) = st.pop() {
            if v < n {
                st.push(!v);
                if let Some(k) = graph[v].iter().position(|&u| u == parent[v]) {
                    graph[v].swap_remove(k);
                }
                graph[v].iter().for_each(|&u| {
                    parent[u] = v;
                    st.push(u);
                });
            } else {
                let v = !v;
                for i in 0..graph[v].len() {
                    let u = graph[v][i];
                    siz[v] += siz[u];
                    if siz[graph[v][0]] < siz[u] {
                        graph[v].swap(0, i);
                    }
                }
            }
        }
        st.push(root);
        let mut c = 0;
        while let Some(v) = st.pop() {
            if v < n {
                st.push(!v);
                index[v] = c;
                c += 1;
                for &u in graph[v].iter().skip(1) {
                    head[u] = u;
                    st.push(u);
                }
                if let Some(&u) = graph[v].get(0) {
                    head[u] = head[v];
                    st.push(u);
                }
            } else {
                range[!v] = c;
            }
        }
        self.index = index;
        self.parent = parent;
        self.head = head;
        self.range = range;
    }

    pub fn lca(&self, mut u: usize, mut v: usize) -> usize {
        let parent = &self.parent;
        let head = &self.head;
        let index = &self.index;

        while head[u] != head[v] {
            if index[u] < index[v] {
                v = parent[head[v]];
            } else {
                u = parent[head[u]];
            }
        }
        if index[u] < index[v] {
            u
        } else {
            v
        }
    }

    fn for_each(
        &self,
        mut u: usize,
        mut v: usize,
        b: usize,
    ) -> (Vec<Range<usize>>, Vec<Range<usize>>) {
        let parent = &self.parent;
        let head = &self.head;
        let index = &self.index;

        let mut up = Vec::new();
        let mut down = Vec::new();
        while head[u] != head[v] {
            if index[u] < index[v] {
                let h = head[v];
                down.push(index[h]..index[v] + 1);
                v = parent[h];
            } else {
                let h = head[u];
                up.push(index[h]..index[u] + 1);
                u = parent[h];
            }
        }
        if index[u] < index[v] {
            down.push(index[u] + b..index[v] + 1);
        } else if index[v] + b < index[u] + 1 {
            up.push(index[v] + b..index[u] + 1);
        }

        down.reverse();
        (up, down)
    }

    pub fn id(&self, v: usize) -> usize {
        self.index[v]
    }

    pub fn for_each_vertex(&self, u: usize, v: usize) -> (Vec<Range<usize>>, Vec<Range<usize>>) {
        self.for_each(u, v, 0)
    }
    pub fn for_each_edge(&self, u: usize, v: usize) -> (Vec<Range<usize>>, Vec<Range<usize>>) {
        self.for_each(u, v, 1)
    }
    pub fn subtree_range(&self, v: usize) -> Range<usize> {
        self.index[v]..self.range[v]
    }
}

// ------------ FenwickTree with generics start ------------

#[derive(Clone, Debug)]
pub struct FenwickTree<T>(Vec<T>);

impl<T: Monoid> FenwickTree<T> {
    #[inline]
    fn lsb(x: usize) -> usize {
        x & x.wrapping_neg()
    }

    pub fn new(n: usize) -> Self {
        Self(vec![T::zero(); n + 1])
    }

    pub fn prefix_sum(&self, i: usize) -> T {
        std::iter::successors(Some(i), |&i| Some(i - Self::lsb(i)))
            .take_while(|&i| i != 0)
            .map(|i| self.0[i].clone())
            .fold(T::zero(), |sum, x| sum + x)
    }

    pub fn add(&mut self, i: usize, x: T) {
        let n = self.0.len();
        std::iter::successors(Some(i + 1), |&i| Some(i + Self::lsb(i)))
            .take_while(|&i| i < n)
            .for_each(|i| self.0[i] = self.0[i].clone() + x.clone());
    }

    /// pred(j, sum(..j)) && !pred(j+1, sum(..j+1))
    pub fn partition(&self, pred: impl Fn(usize, &T) -> bool) -> (usize, T) {
        assert!(pred(0, &self.0[0]), "need to be pred(0, 0)");
        let mut j = 0;
        let mut current = self.0[0].clone();
        let n = self.0.len();
        for d in std::iter::successors(Some(n.next_power_of_two() >> 1), |&d| Some(d >> 1))
            .take_while(|&d| d != 0)
        {
            if j + d < n {
                let next = current.clone() + self.0[j + d].clone();
                if pred(j + d, &next) {
                    current = next;
                    j += d;
                }
            }
        }
        (j, current)
    }
}

impl<T: Monoid> From<Vec<T>> for FenwickTree<T> {
    fn from(src: Vec<T>) -> Self {
        let mut table = std::iter::once(T::zero())
            .chain(src.into_iter())
            .collect::<Vec<T>>();
        let n = table.len();
        (1..n)
            .map(|i| (i, i + Self::lsb(i)))
            .filter(|&(_, j)| j < n)
            .for_each(|(i, j)| {
                table[j] = table[j].clone() + table[i].clone();
            });
        Self(table)
    }
}

impl<T: Group> FenwickTree<T> {
    pub fn sum<R: RangeBounds<usize>>(&self, rng: R) -> T {
        let Range { start, end } = bounds_within(rng, self.0.len() - 1);
        self.prefix_sum(end) + -self.prefix_sum(start)
    }
}

// ------------ FenwickTree with generics end ------------

use std::ops::Bound::{Excluded, Included, Unbounded};
use std::ops::{Range, RangeBounds};

pub fn bounds_within<R: RangeBounds<usize>>(r: R, len: usize) -> Range<usize> {
    let e_ex = match r.end_bound() {
        Included(&e) => e + 1,
        Excluded(&e) => e,
        Unbounded => len,
    }
    .min(len);
    let s_in = match r.start_bound() {
        Included(&s) => s,
        Excluded(&s) => s + 1,
        Unbounded => 0,
    }
    .min(e_ex);
    s_in..e_ex
}

// ------------ Graph impl start ------------

pub trait Cost:
    Element
    + Clone
    + Copy
    + std::fmt::Display
    + Eq
    + Ord
    + Zero
    + One
    + Add<Output = Self>
    + AddAssign
    + Sub<Output = Self>
    + Neg<Output = Self>
{
    const MAX: Self;
}

#[derive(Copy, Clone)]
pub struct Edge<C = Void> {
    // pub from: usize,
    pub to: usize,
    pub cost: C,
    pub id: usize,
}

pub struct UndirectedGraph<C>(pub Vec<Vec<Edge<C>>>, pub usize);
pub struct DirectedGraph<C> {
    pub forward: Vec<Vec<Edge<C>>>,
    pub backward: Vec<Vec<Edge<C>>>,
    pub count: usize,
}

pub trait Graph<C: Element> {
    fn new(size: usize) -> Self;
    fn size(&self) -> usize;
    fn add_edge(&mut self, u: usize, v: usize, cost: C);
    fn edges_from(&self, v: usize) -> std::slice::Iter<Edge<C>>;
}

impl<C: Element> Graph<C> for UndirectedGraph<C> {
    fn new(size: usize) -> Self {
        Self(vec![Vec::<Edge<C>>::new(); size], 0)
    }

    fn size(&self) -> usize {
        self.0.len()
    }

    fn add_edge(&mut self, u: usize, v: usize, cost: C) {
        self.0[u].push(Edge {
            to: v,
            cost: cost.clone(),
            id: self.1,
        });
        self.0[v].push(Edge {
            to: u,
            cost,
            id: self.1,
        });
        self.1 += 1;
    }

    fn edges_from(&self, v: usize) -> std::slice::Iter<Edge<C>> {
        self.0[v].iter()
    }
}

impl<C: Element> Graph<C> for DirectedGraph<C> {
    fn new(size: usize) -> Self {
        Self {
            forward: vec![Vec::<Edge<C>>::new(); size],
            backward: vec![Vec::<Edge<C>>::new(); size],
            count: 0,
        }
    }

    fn size(&self) -> usize {
        self.forward.len()
    }

    fn add_edge(&mut self, u: usize, v: usize, cost: C) {
        self.forward[u].push(Edge {
            to: v,
            cost: cost.clone(),
            id: self.count,
        });
        self.backward[v].push(Edge {
            to: u,
            cost,
            id: self.count,
        });
        self.count += 1;
    }

    fn edges_from(&self, v: usize) -> std::slice::Iter<Edge<C>> {
        self.forward[v].iter()
    }
}

impl<C: Element> DirectedGraph<C> {
    pub fn edges_to(&self, u: usize) -> std::slice::Iter<Edge<C>> {
        self.backward[u].iter()
    }

    pub fn reverse(&self) -> Self {
        Self {
            forward: self.backward.clone(),
            backward: self.forward.clone(),
            count: self.count,
        }
    }
}

macro_rules! impl_cost {
    ($($T:ident,)*) => {
        $(
            impl Cost for $T { const MAX: Self = std::$T::MAX; }
        )*
    };
}

impl_cost! {
    i8, i16, i32, i64, i128, isize,
}

#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
pub struct Void();

impl std::fmt::Display for Void {
    fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
        write!(f, "")
    }
}

impl Zero for Void {
    fn zero() -> Self {
        Void()
    }
    fn is_zero(&self) -> bool {
        true
    }
}

impl One for Void {
    fn one() -> Self {
        Void()
    }
    fn is_one(&self) -> bool {
        true
    }
}

impl Add for Void {
    type Output = Self;
    fn add(self, _: Self) -> Self {
        Void()
    }
}

impl AddAssign for Void {
    fn add_assign(&mut self, _: Self) {}
}

impl Sub for Void {
    type Output = Self;
    fn sub(self, _: Self) -> Self {
        Void()
    }
}

impl Neg for Void {
    type Output = Self;
    fn neg(self) -> Self {
        Void()
    }
}

impl Cost for Void {
    const MAX: Self = Void();
}

// ------------ Graph impl end ------------


// ------------ algebraic traits start ------------
use std::marker::Sized;
use std::ops::*;

/// 元
pub trait Element: Sized + Clone + PartialEq {}
impl<T: Sized + Clone + PartialEq> Element for T {}

/// 結合性
pub trait Associative: Magma {}

/// マグマ
pub trait Magma: Element + Add<Output = Self> {}
impl<T: Element + Add<Output = Self>> Magma for T {}

/// 半群
pub trait SemiGroup: Magma + Associative {}
impl<T: Magma + Associative> SemiGroup for T {}

/// モノイド
pub trait Monoid: SemiGroup + Zero {}
impl<T: SemiGroup + Zero> Monoid for T {}

pub trait ComMonoid: Monoid + AddAssign {}
impl<T: Monoid + AddAssign> ComMonoid for T {}

/// 群
pub trait Group: Monoid + Neg<Output = Self> {}
impl<T: Monoid + Neg<Output = Self>> Group for T {}

pub trait ComGroup: Group + ComMonoid {}
impl<T: Group + ComMonoid> ComGroup for T {}

/// 半環
pub trait SemiRing: ComMonoid + Mul<Output = Self> + One {}
impl<T: ComMonoid + Mul<Output = Self> + One> SemiRing for T {}

/// 環
pub trait Ring: ComGroup + SemiRing {}
impl<T: ComGroup + SemiRing> Ring for T {}

pub trait ComRing: Ring + MulAssign {}
impl<T: Ring + MulAssign> ComRing for T {}

/// 体
pub trait Field: ComRing + Div<Output = Self> + DivAssign {}
impl<T: ComRing + Div<Output = Self> + DivAssign> Field for T {}

/// 加法単元
pub trait Zero: Element {
    fn zero() -> Self;
    fn is_zero(&self) -> bool {
        *self == Self::zero()
    }
}

/// 乗法単元
pub trait One: Element {
    fn one() -> Self;
    fn is_one(&self) -> bool {
        *self == Self::one()
    }
}

macro_rules! impl_integer {
    ($($T:ty,)*) => {
        $(
            impl Associative for $T {}

            impl Zero for $T {
                fn zero() -> Self { 0 }
                fn is_zero(&self) -> bool { *self == 0 }
            }

            impl<'a> Zero for &'a $T {
                fn zero() -> Self { &0 }
                fn is_zero(&self) -> bool { *self == &0 }
            }

            impl One for $T {
                fn one() -> Self { 1 }
                fn is_one(&self) -> bool { *self == 1 }
            }

            impl<'a> One for &'a $T {
                fn one() -> Self { &1 }
                fn is_one(&self) -> bool { *self == &1 }
            }
        )*
    };
}

impl_integer! {
    i8, i16, i32, i64, i128, isize,
    u8, u16, u32, u64, u128, usize,
}
// ------------ algebraic traits end ------------



// ------------ io module start ------------
use std::io::{stdout, BufWriter, Read, StdoutLock, Write};

pub struct IO {
	iter: std::str::SplitAsciiWhitespace<'static>,
	buf: BufWriter<StdoutLock<'static>>,
}

impl IO {
	pub fn new() -> Self {
		let mut input = String::new();
		std::io::stdin().read_to_string(&mut input).unwrap();
		let input = Box::leak(input.into_boxed_str());
		let out = Box::new(stdout());
		IO {
			iter: input.split_ascii_whitespace(),
			buf: BufWriter::new(Box::leak(out).lock()),
		}
	}
	fn scan_str(&mut self) -> &'static str {
		self.iter.next().unwrap()
	}
	pub fn scan<T: Scan>(&mut self) -> <T as Scan>::Output {
		<T as Scan>::scan(self)
	}
	pub fn scan_vec<T: Scan>(&mut self, n: usize) -> Vec<<T as Scan>::Output> {
		(0..n).map(|_| self.scan::<T>()).collect()
	}
	pub fn print<T: Print>(&mut self, x: T) {
		<T as Print>::print(self, x);
	}
	pub fn println<T: Print>(&mut self, x: T) {
		self.print(x);
		self.print("\n");
	}
	pub fn iterln<T: Print, I: Iterator<Item = T>>(&mut self, mut iter: I, delim: &str) {
		if let Some(v) = iter.next() {
			self.print(v);
			for v in iter {
				self.print(delim);
				self.print(v);
			}
		}
		self.print("\n");
	}
	pub fn flush(&mut self) {
		self.buf.flush().unwrap();
	}
}

impl Default for IO {
	fn default() -> Self {
		Self::new()
	}
}

pub trait Scan {
	type Output;
	fn scan(io: &mut IO) -> Self::Output;
}

macro_rules! impl_scan {
	($($t:tt),*) => {
		$(
			impl Scan for $t {
				type Output = Self;
				fn scan(s: &mut IO) -> Self::Output {
					s.scan_str().parse().unwrap()
				}
			}
		)*
	};
}

impl_scan!(i16, i32, i64, isize, u16, u32, u64, usize, String, f32, f64);

impl Scan for char {
	type Output = char;
	fn scan(s: &mut IO) -> Self::Output {
		s.scan_str().chars().next().unwrap()
	}
}

pub enum Bytes {}
impl Scan for Bytes {
	type Output = &'static [u8];
	fn scan(s: &mut IO) -> Self::Output {
		s.scan_str().as_bytes()
	}
}

pub enum Chars {}
impl Scan for Chars {
	type Output = Vec<char>;
	fn scan(s: &mut IO) -> Self::Output {
		s.scan_str().chars().collect()
	}
}

pub enum Usize1 {}
impl Scan for Usize1 {
	type Output = usize;
	fn scan(s: &mut IO) -> Self::Output {
		s.scan::<usize>().wrapping_sub(1)
	}
}

impl<T: Scan, U: Scan> Scan for (T, U) {
	type Output = (T::Output, U::Output);
	fn scan(s: &mut IO) -> Self::Output {
		(T::scan(s), U::scan(s))
	}
}

impl<T: Scan, U: Scan, V: Scan> Scan for (T, U, V) {
	type Output = (T::Output, U::Output, V::Output);
	fn scan(s: &mut IO) -> Self::Output {
		(T::scan(s), U::scan(s), V::scan(s))
	}
}

impl<T: Scan, U: Scan, V: Scan, W: Scan> Scan for (T, U, V, W) {
	type Output = (T::Output, U::Output, V::Output, W::Output);
	fn scan(s: &mut IO) -> Self::Output {
		(T::scan(s), U::scan(s), V::scan(s), W::scan(s))
	}
}

pub trait Print {
	fn print(w: &mut IO, x: Self);
}

macro_rules! impl_print_int {
	($($t:ty),*) => {
		$(
			impl Print for $t {
				fn print(w: &mut IO, x: Self) {
					w.buf.write_all(x.to_string().as_bytes()).unwrap();
				}
			}
		)*
	};
}

impl_print_int!(i16, i32, i64, isize, u16, u32, u64, usize, f32, f64);

impl Print for u8 {
	fn print(w: &mut IO, x: Self) {
		w.buf.write_all(&[x]).unwrap();
	}
}

impl Print for &[u8] {
	fn print(w: &mut IO, x: Self) {
		w.buf.write_all(x).unwrap();
	}
}

impl Print for &str {
	fn print(w: &mut IO, x: Self) {
		w.print(x.as_bytes());
	}
}

impl Print for String {
	fn print(w: &mut IO, x: Self) {
		w.print(x.as_bytes());
	}
}

impl<T: Print, U: Print> Print for (T, U) {
	fn print(w: &mut IO, (x, y): Self) {
		w.print(x);
		w.print(" ");
		w.print(y);
	}
}

impl<T: Print, U: Print, V: Print> Print for (T, U, V) {
	fn print(w: &mut IO, (x, y, z): Self) {
		w.print(x);
		w.print(" ");
		w.print(y);
		w.print(" ");
		w.print(z);
	}
}

mod neboccoio_macro {
	#[macro_export]
	macro_rules! input {
		(@start $io:tt @read @rest) => {};

		(@start $io:tt @read @rest, $($rest: tt)*) => {
			input!(@start $io @read @rest $($rest)*)
		};

		(@start $io:tt @read @rest mut $($rest:tt)*) => {
			input!(@start $io @read @mut [mut] @rest $($rest)*)
		};

		(@start $io:tt @read @rest $($rest:tt)*) => {
			input!(@start $io @read @mut [] @rest $($rest)*)
		};

		(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [[$kind:tt; $len1:expr]; $len2:expr] $($rest:tt)*) => {
			let $($mut)* $var = (0..$len2).map(|_| $io.scan_vec::<$kind>($len1)).collect::<Vec<Vec<$kind>>>();
			input!(@start $io @read @rest $($rest)*)
		};

		(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: [$kind:tt; $len:expr] $($rest:tt)*) => {
			let $($mut)* $var = $io.scan_vec::<$kind>($len);
			input!(@start $io @read @rest $($rest)*)
		};

		(@start $io:tt @read @mut [$($mut:tt)?] @rest $var:tt: $kind:tt $($rest:tt)*) => {
			let $($mut)* $var = $io.scan::<$kind>();
			input!(@start $io @read @rest $($rest)*)
		};

		(from $io:tt $($rest:tt)*) => {
			input!(@start $io @read @rest $($rest)*)
		};
	}
}

// ------------ io module end ------------
0