結果
問題 | No.1678 Coin Trade (Multiple) |
ユーザー | hitonanode |
提出日時 | 2021-09-10 22:37:04 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 461 ms / 5,000 ms |
コード長 | 9,775 bytes |
コンパイル時間 | 2,785 ms |
コンパイル使用メモリ | 196,200 KB |
実行使用メモリ | 15,368 KB |
最終ジャッジ日時 | 2024-06-12 01:40:21 |
合計ジャッジ時間 | 10,166 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 49 ms
10,516 KB |
testcase_04 | AC | 229 ms
13,040 KB |
testcase_05 | AC | 103 ms
14,716 KB |
testcase_06 | AC | 80 ms
14,024 KB |
testcase_07 | AC | 228 ms
11,016 KB |
testcase_08 | AC | 143 ms
11,700 KB |
testcase_09 | AC | 104 ms
14,740 KB |
testcase_10 | AC | 63 ms
7,532 KB |
testcase_11 | AC | 166 ms
12,556 KB |
testcase_12 | AC | 54 ms
7,356 KB |
testcase_13 | AC | 345 ms
14,304 KB |
testcase_14 | AC | 134 ms
10,328 KB |
testcase_15 | AC | 127 ms
12,608 KB |
testcase_16 | AC | 40 ms
12,604 KB |
testcase_17 | AC | 111 ms
15,052 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 2 ms
5,376 KB |
testcase_29 | AC | 1 ms
5,376 KB |
testcase_30 | AC | 2 ms
5,376 KB |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | AC | 2 ms
5,376 KB |
testcase_33 | AC | 1 ms
5,376 KB |
testcase_34 | AC | 1 ms
5,376 KB |
testcase_35 | AC | 2 ms
5,376 KB |
testcase_36 | AC | 2 ms
5,376 KB |
testcase_37 | AC | 2 ms
5,376 KB |
testcase_38 | AC | 2 ms
5,376 KB |
testcase_39 | AC | 2 ms
5,376 KB |
testcase_40 | AC | 1 ms
5,376 KB |
testcase_41 | AC | 2 ms
5,376 KB |
testcase_42 | AC | 2 ms
5,376 KB |
testcase_43 | AC | 1 ms
5,376 KB |
testcase_44 | AC | 1 ms
5,376 KB |
testcase_45 | AC | 2 ms
5,376 KB |
testcase_46 | AC | 2 ms
5,376 KB |
testcase_47 | AC | 2 ms
5,376 KB |
testcase_48 | AC | 413 ms
15,152 KB |
testcase_49 | AC | 418 ms
15,368 KB |
testcase_50 | AC | 418 ms
15,160 KB |
testcase_51 | AC | 418 ms
15,200 KB |
testcase_52 | AC | 455 ms
15,120 KB |
testcase_53 | AC | 439 ms
15,284 KB |
testcase_54 | AC | 461 ms
15,320 KB |
testcase_55 | AC | 438 ms
15,232 KB |
testcase_56 | AC | 449 ms
15,272 KB |
testcase_57 | AC | 447 ms
15,172 KB |
testcase_58 | AC | 170 ms
13,440 KB |
ソースコード
#include <algorithm> #include <array> #include <bitset> #include <cassert> #include <chrono> #include <cmath> #include <complex> #include <deque> #include <forward_list> #include <fstream> #include <functional> #include <iomanip> #include <ios> #include <iostream> #include <limits> #include <list> #include <map> #include <numeric> #include <queue> #include <random> #include <set> #include <sstream> #include <stack> #include <string> #include <tuple> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using lint = long long; #define FOR(i, begin, end) for(int i=(begin),i##_end_=(end);i<i##_end_;i++) #define REP(i, n) FOR(i,0,n) #include <array> #include <cstddef> #include <limits> #include <tuple> #include <type_traits> #include <utility> #include <vector> // Radix heap for unsigned integer // https://github.com/iwiwi/radix-heap template <class Uint, class Label, typename std::enable_if<std::is_unsigned<Uint>::value>::type * = nullptr> class radix_heap { int sz; Uint last; std::array<std::vector<std::pair<Uint, Label>>, std::numeric_limits<Uint>::digits + 1> v; template <class U, typename std::enable_if<sizeof(U) == 4>::type * = nullptr> static inline int bucket(U x) noexcept { return x ? 32 - __builtin_clz(x) : 0; } template <class U, typename std::enable_if<sizeof(U) == 8>::type * = nullptr> static inline int bucket(U x) noexcept { return x ? 64 - __builtin_clzll(x) : 0; } void pull() { if (!v[0].empty()) return; int i = 1; while (v[i].empty()) ++i; last = v[i].back().first; for (int j = 0; j < int(v[i].size()); j++) last = std::min(last, v[i][j].first); for (int j = 0; j < int(v[i].size()); j++) { v[bucket(v[i][j].first ^ last)].emplace_back(std::move(v[i][j])); } v[i].clear(); } public: radix_heap() : sz(0), last(0) { static_assert(std::numeric_limits<Uint>::digits > 0, "Invalid type."); } std::size_t size() const noexcept { return sz; } bool empty() const noexcept { return sz == 0; } void push(Uint x, const Label &val) { ++sz, v[bucket(x ^ last)].emplace_back(x, val); } void push(Uint x, Label &&val) { ++sz, v[bucket(x ^ last)].emplace_back(x, std::move(val)); } template <class... Args> void emplace(Uint x, Args &&...args) { ++sz, v[bucket(x ^ last)].emplace_back(std::piecewise_construct, std::forward_as_tuple(x), std::forward_as_tuple(args...)); } void pop() { pull(), --sz, v[0].pop_back(); } std::pair<Uint, Label> top() { return pull(), v[0].back(); } Uint top_key() { return pull(), last; } Label &top_label() { return pull(), v[0].back().second; } void clear() noexcept { sz = 0, last = 0; for (auto &vec : v) vec.clear(); } void swap(radix_heap<Uint, Label> &a) { std::swap(sz, a.sz), std::swap(last, a.last), v.swap(a.v); } }; // Minimum cost flow WITH NO NEGATIVE CYCLE (just negative cost edge is allowed) // Verified: // - SRM 770 Div1 Medium https://community.topcoder.com/stat?c=problem_statement&pm=15702 // - CodeChef LTIME98 Ancient Magic https://www.codechef.com/problems/ANCT template <class Cap = long long, class Cost = long long, Cost INF_COST = std::numeric_limits<Cost>::max() / 2> struct MinCostFlow { struct _edge { int to, rev; Cap cap; Cost cost; template <class Ostream> friend Ostream &operator<<(Ostream &os, const _edge &e) { return os << '(' << e.to << ',' << e.rev << ',' << e.cap << ',' << e.cost << ')'; } }; bool _is_dual_infeasible; int V; std::vector<std::vector<_edge>> g; std::vector<Cost> dist; std::vector<int> prevv, preve; std::vector<Cost> dual; // dual[V]: potential std::vector<std::pair<int, int>> pos; bool _initialize_dual_dag() { std::vector<int> deg_in(V); for (int i = 0; i < V; i++) { for (const auto &e : g[i]) deg_in[e.to] += (e.cap > 0); } std::vector<int> st; st.reserve(V); for (int i = 0; i < V; i++) { if (!deg_in[i]) st.push_back(i); } for (int n = 0; n < V; n++) { if (int(st.size()) == n) return false; // Not DAG int now = st[n]; for (const auto &e : g[now]) { if (!e.cap) continue; deg_in[e.to]--; if (deg_in[e.to] == 0) st.push_back(e.to); if (dual[e.to] >= dual[now] + e.cost) dual[e.to] = dual[now] + e.cost; } } return true; } bool _initialize_dual_spfa() { // Find feasible dual's when negative cost edges exist dual.assign(V, 0); std::queue<int> q; std::vector<int> in_queue(V); std::vector<int> nvis(V); for (int i = 0; i < V; i++) q.push(i), in_queue[i] = true; while (q.size()) { int now = q.front(); q.pop(), in_queue[now] = false; if (nvis[now] > V) return false; // Negative cycle exists nvis[now]++; for (const auto &e : g[now]) { if (!e.cap) continue; if (dual[e.to] > dual[now] + e.cost) { dual[e.to] = dual[now] + e.cost; if (!in_queue[e.to]) in_queue[e.to] = true, q.push(e.to); } } } return true; } bool initialize_dual() { return !_is_dual_infeasible or _initialize_dual_dag() or _initialize_dual_spfa(); } template <class heap> void _dijkstra(int s) { // O(ElogV) prevv.assign(V, -1); preve.assign(V, -1); dist.assign(V, INF_COST); dist[s] = 0; heap q; q.emplace(0, s); while (!q.empty()) { auto p = q.top(); q.pop(); int v = p.second; if (dist[v] < Cost(p.first)) continue; for (int i = 0; i < (int)g[v].size(); i++) { _edge &e = g[v][i]; auto c = dist[v] + e.cost + dual[v] - dual[e.to]; if (e.cap > 0 and dist[e.to] > c) { dist[e.to] = c, prevv[e.to] = v, preve[e.to] = i; q.emplace(dist[e.to], e.to); } } } } MinCostFlow(int V = 0) : _is_dual_infeasible(false), V(V), g(V), dual(V, 0) { static_assert(INF_COST > 0, "INF_COST must be positive"); } int add_edge(int from, int to, Cap cap, Cost cost) { assert(0 <= from and from < V); assert(0 <= to and to < V); assert(cap >= 0); if (cost < 0) _is_dual_infeasible = true; pos.emplace_back(from, g[from].size()); g[from].push_back({to, (int)g[to].size() + (from == to), cap, cost}); g[to].push_back({from, (int)g[from].size() - 1, (Cap)0, -cost}); return int(pos.size()) - 1; } // Flush flow f from s to t. Graph must not have negative cycle. using Pque = std::priority_queue<std::pair<Cost, int>, std::vector<std::pair<Cost, int>>, std::greater<std::pair<Cost, int>>>; template <class heap = Pque> std::pair<Cap, Cost> flow(int s, int t, const Cap &flow_limit) { // You can also use radix_heap<typename std::make_unsigned<Cost>::type, int> as prique if (!initialize_dual()) throw; // Fail to find feasible dual Cost cost = 0; Cap flow_rem = flow_limit; while (flow_rem > 0) { _dijkstra<heap>(s); if (dist[t] == INF_COST) break; for (int v = 0; v < V; v++) dual[v] = std::min(dual[v] + dist[v], INF_COST); Cap d = flow_rem; for (int v = t; v != s; v = prevv[v]) d = std::min(d, g[prevv[v]][preve[v]].cap); flow_rem -= d; cost += d * (dual[t] - dual[s]); for (int v = t; v != s; v = prevv[v]) { _edge &e = g[prevv[v]][preve[v]]; e.cap -= d; g[v][e.rev].cap += d; } } return std::make_pair(flow_limit - flow_rem, cost); } struct edge { int from, to; Cap cap, flow; Cost cost; template <class Ostream> friend Ostream &operator<<(Ostream &os, const edge &e) { return os << '(' << e.from << "->" << e.to << ',' << e.flow << '/' << e.cap << ",$" << e.cost << ')'; } }; edge get_edge(int edge_id) const { int m = int(pos.size()); assert(0 <= edge_id and edge_id < m); auto _e = g[pos[edge_id].first][pos[edge_id].second]; auto _re = g[_e.to][_e.rev]; return {pos[edge_id].first, _e.to, _e.cap + _re.cap, _re.cap, _e.cost}; } std::vector<edge> edges() const { std::vector<edge> ret(pos.size()); for (int i = 0; i < int(pos.size()); i++) ret[i] = get_edge(i); return ret; } template <class Ostream> friend Ostream &operator<<(Ostream &os, const MinCostFlow &mcf) { os << "[MinCostFlow]V=" << mcf.V << ":"; for (int i = 0; i < mcf.V; i++) { for (auto &e : mcf.g[i]) os << "\n" << i << "->" << e.to << ":cap" << e.cap << ",$" << e.cost; } return os; } }; int main() { cin.tie(nullptr), ios::sync_with_stdio(false); int N, K; cin >> N >> K; constexpr lint INF = 1LL << 60; MinCostFlow<int, lint> mcf(N + 2); REP(i, N) mcf.add_edge(i, i + 1, K, 0); vector<int> A(N + 1); FOR(i, 1, N + 1) { int m; cin >> A[i] >> m; while (m--) { int b; cin >> b; mcf.add_edge(b, i, 1, -A[i] + A[b]); } } cout << -mcf.flow<radix_heap<unsigned long long, int>>(0, N, K).second << '\n'; }