結果
問題 | No.371 ぼく悪いプライムじゃないよ |
ユーザー | mai |
提出日時 | 2021-09-11 11:14:27 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 6,588 bytes |
コンパイル時間 | 3,190 ms |
コンパイル使用メモリ | 230,020 KB |
実行使用メモリ | 13,756 KB |
最終ジャッジ日時 | 2024-06-22 18:49:42 |
合計ジャッジ時間 | 5,951 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
13,756 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 1 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 3 ms
6,940 KB |
testcase_09 | AC | 3 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 30 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,944 KB |
testcase_13 | AC | 8 ms
6,940 KB |
testcase_14 | AC | 5 ms
6,940 KB |
testcase_15 | TLE | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
testcase_30 | -- | - |
testcase_31 | -- | - |
testcase_32 | -- | - |
testcase_33 | -- | - |
testcase_34 | -- | - |
testcase_35 | -- | - |
testcase_36 | -- | - |
testcase_37 | -- | - |
testcase_38 | -- | - |
testcase_39 | -- | - |
testcase_40 | -- | - |
testcase_41 | -- | - |
testcase_42 | -- | - |
testcase_43 | -- | - |
testcase_44 | -- | - |
testcase_45 | -- | - |
ソースコード
#pragma GCC optimize ("O3") #include <bits/stdc++.h> // clang-format off using namespace std; using ll = long long int; #define all(v) (v).begin(),(v).end() #define repeat(cnt,l) for(typename remove_const<typename remove_reference<decltype(l)>::type>::type cnt={};(cnt)<(l);++(cnt)) #define rrepeat(cnt,l) for(auto cnt=(l)-1;0<=(cnt);--(cnt)) #define iterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);++(cnt)) #define increase(cnt,b,e) for(auto cnt=(b);(cnt)<(e);++(cnt)) #define decrease(cnt,b,e) for(auto cnt=(b);(e)<=(cnt);--(cnt)) const long long MD = 1000000007; const long double PI = 3.1415926535897932384626433832795L; template<typename T1, typename T2> inline ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << '(' << p.first << ':' << p.second << ')'; return o; } template<typename T> inline T& chmax(T& to, const T& val) { return to = max(to, val); } template<typename T> inline T& chmin(T& to, const T& val) { return to = min(to, val); } void bye(string s, int code = 0) { cout << s << endl; exit(code); } mt19937_64 randdev(8901016); template<typename T, typename Random = decltype(randdev), typename enable_if<is_integral<T>::value>::type* = nullptr> inline T rand(T l, T h, Random& rand = randdev) { return uniform_int_distribution<T>(l, h)(rand); } template<typename T, typename Random = decltype(randdev), typename enable_if<is_floating_point<T>::value>::type* = nullptr> inline T rand(T l, T h, Random& rand = randdev) { return uniform_real_distribution<T>(l, h)(rand); }template<typename T> static ostream& operator<<(ostream& o, const std::vector<T>& v) { o << "[ "; for(const auto& e : v) o<<e<<' '; return o << ']'; } template <typename I> struct MyRangeFormat{ I b,e; MyRangeFormat(I _b, I _e):b(_b),e(_e){} }; template<typename I> static ostream& operator<<(ostream& o, const MyRangeFormat<I>& f) { o << "[ "; iterate(i,f.b,f.e) o<<*i<<' '; return o << ']'; } template <typename I> struct MyMatrixFormat{ const I& p; long long n, m; MyMatrixFormat(const I& _p, long long _n, long long _m):p(_p),n(_n),m(_m){} }; template<typename I> static ostream& operator<<(ostream& o, const MyMatrixFormat<I>& f) { o<<'\n'; repeat(i,(f.n)) { repeat(j,f.m) o<<f.p[i][j]<<' '; o<<'\n'; } return o; } struct LOG_t { ~LOG_t() { cout << endl; } }; #define LOG (LOG_t(),cout<<'L'<<__LINE__<<": ") #define FMTA(m,w) (MyRangeFormat<decltype(m+0)>(m,m+w)) #define FMTR(b,e) (MyRangeFormat<decltype(e)>(b,e)) #define FMTV(v) FMTR(v.begin(),v.end()) #define FMTM(m,h,w) (MyMatrixFormat<decltype(m+0)>(m,h,w)) // clang-format on // template <int Max = 2000> template <int Max> class Prime { int d_[Max + 1]; int n_; int li_[std::max(10000, Max / 10)]; public: constexpr Prime() : d_(), n_(), li_() { d_[0] = d_[1] = 0; for (int i = 2; i <= Max; i += 2) { d_[i] = 2; } n_ = 1; li_[0] = 2; int p = 3; for (p = 3; p * p <= Max; p += 2) { if (d_[p] != 0) continue; d_[p] = p; li_[n_++] = p; for (int j = p * p; j <= Max; j += p) { // i*i d_[j] = p; } } for (; p <= Max; p += 2) { if (d_[p] != 0) continue; d_[p] = p; li_[n_++] = p; } } constexpr inline bool isPrime(int x) const { return (x >= 2) && (x == 2 || d_[x] == x); } constexpr inline int size() const { return n_; } constexpr inline int operator[](int i) const { return li_[i]; } class iterator { const Prime& pl; int ptr = 0; public: constexpr iterator(const decltype(pl)& _pl, int _ptr = 0) : pl(_pl), ptr(_ptr) {} constexpr int operator*() const { return pl[ptr]; } constexpr iterator& operator++() { ptr++; return *this; } // prefix constexpr inline bool operator!=(const iterator& it) const { return ptr != it.ptr ? !(pl.n_ <= ptr && pl.n_ <= it.ptr) : false; } constexpr inline bool operator==(const iterator& it) const { return ptr != it.ptr ? (pl.n_ <= ptr && pl.n_ <= it.ptr) : true; } }; constexpr Prime::iterator begin() const { return Prime::iterator(*this, 0); } constexpr Prime::iterator end() const { return Prime::iterator(*this, n_); } std::map<int, int> division(long long number) const { std::map<int, int> div; // for large number for (int i = 0; (long long)Max <= number && i < n_; ++i) { long long p = li_[i]; int c = 0; while (number / p * p == number) ++c, number /= p; if (c > 0) div[(int)p] = c; } if ((long long)Max <= number) { // guess it's prime number. div[number] += 1; return div; } while (number >= 2) { long long p = d_[number]; int c = 0; while (number / p * p == number) ++c, number /= p; if (c > 0) div[(int)p] = c; } return div; } }; // // sqrt(10**10) = 10**5 より大きな素数を見る必要は無い。 // 調べたいのは合成数。 // H 以下の合成数に sqrt(H) を超える素数を素因数に持つ可能性はあるが、 // その場合は、常に sqrt(H) 未満の素数を必ず素因数に持つ。 // よって、高々 sqrt(H) までの素数を予め列挙しておけば十分である。 constexpr int kMaxPrime = 101010; Prime<kMaxPrime> prime; ll L, H; // int main() { cin >> L >> H; pair<ll, ll> best(0, 0); // < 素因数, 値> rrepeat(pi, prime.size()) { ll p = prime[pi]; // H 以下の値だけを見たいので、H < p な素数は興味がない。 // H == p ならば、H は素数なので、H は解から除外出来る if (H <= p) continue; // h だけを見れば良いわけではない いやわからん なんだこれ // H 以下かつ、p の倍数を満たす最大値を求める。 ll h = H/p*p; // LOG << h << " " << p; // // L 未満なら制約違反の値なので除く。 // if (h < L) continue; // // 素数は対象外 // if (h == p) continue; for (ll q = h/p; p*q >= L && p <= q; --q) { ll n = p*q; // p は h の最小の素因数とは限らないので、最小の素因数を求めよう // TODO: この部分のならし計算量が不明。2や3等の小さな素数のヒット率が高いので、 // O(n/logn)より確実に小さくなる。 ll minp = p; for (ll p2 : prime) { if (n/p2*p2 == h) { chmin(minp, p2); break; } } // LOG << minp << " " << n; chmax(best, pair<ll,ll>(minp, n)); } } cout << best.second << endl; return 0; }