結果
| 問題 |
No.230 Splarraay スプラレェーイ
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-10-06 11:33:03 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 241 ms / 5,000 ms |
| コード長 | 6,453 bytes |
| コンパイル時間 | 12,223 ms |
| コンパイル使用メモリ | 405,396 KB |
| 実行使用メモリ | 15,676 KB |
| 最終ジャッジ日時 | 2024-07-23 02:46:34 |
| 合計ジャッジ時間 | 14,530 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 17 |
ソースコード
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) };
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
/**
* Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array
* whose elements are elements of monoid T. Note that constructing this tree requires the identity
* element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+)
* Reference: http://d.hatena.ne.jp/kyuridenamida/20121114/1352835261
* Verified by https://codeforces.com/contest/1114/submission/49759034
*/
pub trait ActionRing {
type T: Clone + Copy; // data
type U: Clone + Copy + PartialEq + Eq; // action
fn biop(x: Self::T, y: Self::T) -> Self::T;
fn update(x: Self::T, a: Self::U, height: usize) -> Self::T;
fn upop(fst: Self::U, snd: Self::U) -> Self::U;
fn e() -> Self::T;
fn upe() -> Self::U; // identity for upop
}
pub struct LazySegTree<R: ActionRing> {
n: usize,
dep: usize,
dat: Vec<R::T>,
lazy: Vec<R::U>,
}
impl<R: ActionRing> LazySegTree<R> {
#[allow(unused)]
pub fn new(n_: usize) -> Self {
let mut n = 1;
let mut dep = 0;
while n < n_ { n *= 2; dep += 1; } // n is a power of 2
LazySegTree {
n: n,
dep: dep,
dat: vec![R::e(); 2 * n - 1],
lazy: vec![R::upe(); 2 * n - 1]
}
}
#[allow(unused)]
pub fn with(a: &[R::T]) -> Self {
let n_ = a.len();
let mut n = 1;
let mut dep = 0;
while n < n_ { n *= 2; dep += 1; } // n is a power of 2
let mut dat = vec![R::e(); 2 * n - 1];
for i in 0..n_ {
dat[n - 1 + i] = a[i];
}
for i in (0..n - 1).rev() {
dat[i] = R::biop(dat[2 * i + 1], dat[2 * i + 2]);
}
LazySegTree {
n: n,
dep: dep,
dat: dat,
lazy: vec![R::upe(); 2 * n - 1],
}
}
#[inline]
fn lazy_evaluate_node(&mut self, k: usize, height: usize) {
if self.lazy[k] == R::upe() { return; }
self.dat[k] = R::update(self.dat[k], self.lazy[k], height);
if k < self.n - 1 {
self.lazy[2 * k + 1] = R::upop(self.lazy[2 * k + 1], self.lazy[k]);
self.lazy[2 * k + 2] = R::upop(self.lazy[2 * k + 2], self.lazy[k]);
}
self.lazy[k] = R::upe(); // identity for upop
}
#[inline]
fn update_node(&mut self, k: usize) {
self.dat[k] = R::biop(self.dat[2 * k + 1], self.dat[2 * k + 2]);
}
fn update_sub(&mut self, a: usize, b: usize, v: R::U, k: usize, height: usize, l: usize, r: usize) {
self.lazy_evaluate_node(k, height);
// [a,b) and [l,r) intersects?
if r <= a || b <= l {return;}
if a <= l && r <= b {
self.lazy[k] = R::upop(self.lazy[k], v);
self.lazy_evaluate_node(k, height);
return;
}
self.update_sub(a, b, v, 2 * k + 1, height - 1, l, (l + r) / 2);
self.update_sub(a, b, v, 2 * k + 2, height - 1, (l + r) / 2, r);
self.update_node(k);
}
/* ary[i] = upop(ary[i], v) for i in [a, b) (half-inclusive) */
#[inline]
pub fn update(&mut self, a: usize, b: usize, v: R::U) {
let n = self.n;
let dep = self.dep;
self.update_sub(a, b, v, 0, dep, 0, n);
}
/* l,r are for simplicity */
fn query_sub(&mut self, a: usize, b: usize, k: usize, height: usize, l: usize, r: usize) -> R::T {
self.lazy_evaluate_node(k, height);
// [a,b) and [l,r) intersect?
if r <= a || b <= l {return R::e();}
if a <= l && r <= b {return self.dat[k];}
let vl = self.query_sub(a, b, 2 * k + 1, height - 1, l, (l + r) / 2);
let vr = self.query_sub(a, b, 2 * k + 2, height - 1, (l + r) / 2, r);
self.update_node(k);
R::biop(vl, vr)
}
/* [a, b) (note: half-inclusive) */
#[inline]
pub fn query(&mut self, a: usize, b: usize) -> R::T {
let n = self.n;
let dep = self.dep;
self.query_sub(a, b, 0, dep, 0, n)
}
}
enum Affine {}
impl ActionRing for Affine {
type T = i64; // data
type U = (i64, i64); // action, (a, b) |-> x |-> ax + b
fn biop(x: Self::T, y: Self::T) -> Self::T {
x + y
}
fn update(x: Self::T, (a, b): Self::U, height: usize) -> Self::T {
x * a + (b << height)
}
fn upop(fst: Self::U, snd: Self::U) -> Self::U {
let (a, b) = fst;
let (c, d) = snd;
(a * c, b * c + d)
}
fn e() -> Self::T {
0
}
fn upe() -> Self::U { // identity for upop
(1, 0)
}
}
fn main() {
input! {
n: usize,
q: usize,
xlr: [(i32, usize, usize); q],
}
let mut st = LazySegTree::<Affine>::new(n);
let mut all = LazySegTree::<Affine>::new(n);
let mut a = 0;
let mut b = 0;
for (x, l, r) in xlr {
let r = r + 1;
if x == 0 {
let k = st.query(l, r);
let l = all.query(l, r);
if k > 0 {
a += (k + l) / 2;
} else if k < 0 {
b += (l - k) / 2;
}
} else if x == 1 {
st.update(l, r, (0, 1));
all.update(l, r, (0, 1));
} else {
st.update(l, r, (0, -1));
all.update(l, r, (0, 1));
}
}
let k = st.query(0, n);
let l = all.query(0, n);
a += (l + k) / 2;
b += (l - k) / 2;
println!("{} {}", a, b);
}