結果
問題 | No.230 Splarraay スプラレェーイ |
ユーザー | koba-e964 |
提出日時 | 2021-10-06 11:33:03 |
言語 | Rust (1.77.0 + proconio) |
結果 |
AC
|
実行時間 | 241 ms / 5,000 ms |
コード長 | 6,453 bytes |
コンパイル時間 | 12,223 ms |
コンパイル使用メモリ | 405,396 KB |
実行使用メモリ | 15,676 KB |
最終ジャッジ日時 | 2024-07-23 02:46:34 |
合計ジャッジ時間 | 14,530 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 1 ms
6,940 KB |
testcase_03 | AC | 0 ms
6,940 KB |
testcase_04 | AC | 0 ms
6,940 KB |
testcase_05 | AC | 1 ms
6,944 KB |
testcase_06 | AC | 9 ms
6,940 KB |
testcase_07 | AC | 1 ms
6,944 KB |
testcase_08 | AC | 3 ms
6,944 KB |
testcase_09 | AC | 102 ms
8,704 KB |
testcase_10 | AC | 68 ms
6,944 KB |
testcase_11 | AC | 54 ms
6,944 KB |
testcase_12 | AC | 102 ms
8,576 KB |
testcase_13 | AC | 14 ms
6,940 KB |
testcase_14 | AC | 54 ms
12,484 KB |
testcase_15 | AC | 132 ms
12,388 KB |
testcase_16 | AC | 167 ms
13,992 KB |
testcase_17 | AC | 241 ms
15,412 KB |
testcase_18 | AC | 104 ms
15,676 KB |
testcase_19 | AC | 141 ms
14,200 KB |
ソースコード
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8 macro_rules! input { ($($r:tt)*) => { let stdin = std::io::stdin(); let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock())); let mut next = move || -> String{ bytes.by_ref().map(|r|r.unwrap() as char) .skip_while(|c|c.is_whitespace()) .take_while(|c|!c.is_whitespace()) .collect() }; input_inner!{next, $($r)*} }; } macro_rules! input_inner { ($next:expr) => {}; ($next:expr,) => {}; ($next:expr, $var:ident : $t:tt $($r:tt)*) => { let $var = read_value!($next, $t); input_inner!{$next $($r)*} }; } macro_rules! read_value { ($next:expr, ( $($t:tt),* )) => { ($(read_value!($next, $t)),*) }; ($next:expr, [ $t:tt ; $len:expr ]) => { (0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>() }; ($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error")); } /** * Lazy Segment Tree. This data structure is useful for fast folding and updating on intervals of an array * whose elements are elements of monoid T. Note that constructing this tree requires the identity * element of T and the operation of T. This is monomorphised, because of efficiency. T := i64, biop = max, upop = (+) * Reference: http://d.hatena.ne.jp/kyuridenamida/20121114/1352835261 * Verified by https://codeforces.com/contest/1114/submission/49759034 */ pub trait ActionRing { type T: Clone + Copy; // data type U: Clone + Copy + PartialEq + Eq; // action fn biop(x: Self::T, y: Self::T) -> Self::T; fn update(x: Self::T, a: Self::U, height: usize) -> Self::T; fn upop(fst: Self::U, snd: Self::U) -> Self::U; fn e() -> Self::T; fn upe() -> Self::U; // identity for upop } pub struct LazySegTree<R: ActionRing> { n: usize, dep: usize, dat: Vec<R::T>, lazy: Vec<R::U>, } impl<R: ActionRing> LazySegTree<R> { #[allow(unused)] pub fn new(n_: usize) -> Self { let mut n = 1; let mut dep = 0; while n < n_ { n *= 2; dep += 1; } // n is a power of 2 LazySegTree { n: n, dep: dep, dat: vec![R::e(); 2 * n - 1], lazy: vec![R::upe(); 2 * n - 1] } } #[allow(unused)] pub fn with(a: &[R::T]) -> Self { let n_ = a.len(); let mut n = 1; let mut dep = 0; while n < n_ { n *= 2; dep += 1; } // n is a power of 2 let mut dat = vec![R::e(); 2 * n - 1]; for i in 0..n_ { dat[n - 1 + i] = a[i]; } for i in (0..n - 1).rev() { dat[i] = R::biop(dat[2 * i + 1], dat[2 * i + 2]); } LazySegTree { n: n, dep: dep, dat: dat, lazy: vec![R::upe(); 2 * n - 1], } } #[inline] fn lazy_evaluate_node(&mut self, k: usize, height: usize) { if self.lazy[k] == R::upe() { return; } self.dat[k] = R::update(self.dat[k], self.lazy[k], height); if k < self.n - 1 { self.lazy[2 * k + 1] = R::upop(self.lazy[2 * k + 1], self.lazy[k]); self.lazy[2 * k + 2] = R::upop(self.lazy[2 * k + 2], self.lazy[k]); } self.lazy[k] = R::upe(); // identity for upop } #[inline] fn update_node(&mut self, k: usize) { self.dat[k] = R::biop(self.dat[2 * k + 1], self.dat[2 * k + 2]); } fn update_sub(&mut self, a: usize, b: usize, v: R::U, k: usize, height: usize, l: usize, r: usize) { self.lazy_evaluate_node(k, height); // [a,b) and [l,r) intersects? if r <= a || b <= l {return;} if a <= l && r <= b { self.lazy[k] = R::upop(self.lazy[k], v); self.lazy_evaluate_node(k, height); return; } self.update_sub(a, b, v, 2 * k + 1, height - 1, l, (l + r) / 2); self.update_sub(a, b, v, 2 * k + 2, height - 1, (l + r) / 2, r); self.update_node(k); } /* ary[i] = upop(ary[i], v) for i in [a, b) (half-inclusive) */ #[inline] pub fn update(&mut self, a: usize, b: usize, v: R::U) { let n = self.n; let dep = self.dep; self.update_sub(a, b, v, 0, dep, 0, n); } /* l,r are for simplicity */ fn query_sub(&mut self, a: usize, b: usize, k: usize, height: usize, l: usize, r: usize) -> R::T { self.lazy_evaluate_node(k, height); // [a,b) and [l,r) intersect? if r <= a || b <= l {return R::e();} if a <= l && r <= b {return self.dat[k];} let vl = self.query_sub(a, b, 2 * k + 1, height - 1, l, (l + r) / 2); let vr = self.query_sub(a, b, 2 * k + 2, height - 1, (l + r) / 2, r); self.update_node(k); R::biop(vl, vr) } /* [a, b) (note: half-inclusive) */ #[inline] pub fn query(&mut self, a: usize, b: usize) -> R::T { let n = self.n; let dep = self.dep; self.query_sub(a, b, 0, dep, 0, n) } } enum Affine {} impl ActionRing for Affine { type T = i64; // data type U = (i64, i64); // action, (a, b) |-> x |-> ax + b fn biop(x: Self::T, y: Self::T) -> Self::T { x + y } fn update(x: Self::T, (a, b): Self::U, height: usize) -> Self::T { x * a + (b << height) } fn upop(fst: Self::U, snd: Self::U) -> Self::U { let (a, b) = fst; let (c, d) = snd; (a * c, b * c + d) } fn e() -> Self::T { 0 } fn upe() -> Self::U { // identity for upop (1, 0) } } fn main() { input! { n: usize, q: usize, xlr: [(i32, usize, usize); q], } let mut st = LazySegTree::<Affine>::new(n); let mut all = LazySegTree::<Affine>::new(n); let mut a = 0; let mut b = 0; for (x, l, r) in xlr { let r = r + 1; if x == 0 { let k = st.query(l, r); let l = all.query(l, r); if k > 0 { a += (k + l) / 2; } else if k < 0 { b += (l - k) / 2; } } else if x == 1 { st.update(l, r, (0, 1)); all.update(l, r, (0, 1)); } else { st.update(l, r, (0, -1)); all.update(l, r, (0, 1)); } } let k = st.query(0, n); let l = all.query(0, n); a += (l + k) / 2; b += (l - k) / 2; println!("{} {}", a, b); }