結果
| 問題 |
No.1193 Penguin Sequence
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2021-10-09 17:40:45 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 122 ms / 2,000 ms |
| コード長 | 7,779 bytes |
| コンパイル時間 | 15,802 ms |
| コンパイル使用メモリ | 404,308 KB |
| 実行使用メモリ | 12,800 KB |
| 最終ジャッジ日時 | 2024-09-13 03:42:16 |
| 合計ジャッジ時間 | 21,023 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 38 |
ソースコード
#[allow(unused_imports)]
use std::cmp::*;
#[allow(unused_imports)]
use std::collections::*;
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8
macro_rules! input {
($($r:tt)*) => {
let stdin = std::io::stdin();
let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));
let mut next = move || -> String{
bytes.by_ref().map(|r|r.unwrap() as char)
.skip_while(|c|c.is_whitespace())
.take_while(|c|!c.is_whitespace())
.collect()
};
input_inner!{next, $($r)*}
};
}
macro_rules! input_inner {
($next:expr) => {};
($next:expr,) => {};
($next:expr, $var:ident : $t:tt $($r:tt)*) => {
let $var = read_value!($next, $t);
input_inner!{$next $($r)*}
};
}
macro_rules! read_value {
($next:expr, [ $t:tt ; $len:expr ]) => {
(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()
};
($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));
}
/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342
mod mod_int {
use std::ops::*;
pub trait Mod: Copy { fn m() -> i64; }
#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }
impl<M: Mod> ModInt<M> {
// x >= 0
pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }
fn new_internal(x: i64) -> Self {
ModInt { x: x, phantom: ::std::marker::PhantomData }
}
pub fn pow(self, mut e: i64) -> Self {
debug_assert!(e >= 0);
let mut sum = ModInt::new_internal(1);
let mut cur = self;
while e > 0 {
if e % 2 != 0 { sum *= cur; }
cur *= cur;
e /= 2;
}
sum
}
#[allow(dead_code)]
pub fn inv(self) -> Self { self.pow(M::m() - 2) }
}
impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {
type Output = Self;
fn add(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x + other.x;
if sum >= M::m() { sum -= M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {
type Output = Self;
fn sub(self, other: T) -> Self {
let other = other.into();
let mut sum = self.x - other.x;
if sum < 0 { sum += M::m(); }
ModInt::new_internal(sum)
}
}
impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {
type Output = Self;
fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }
}
impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {
fn add_assign(&mut self, other: T) { *self = *self + other; }
}
impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {
fn sub_assign(&mut self, other: T) { *self = *self - other; }
}
impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {
fn mul_assign(&mut self, other: T) { *self = *self * other; }
}
impl<M: Mod> Neg for ModInt<M> {
type Output = Self;
fn neg(self) -> Self { ModInt::new(0) - self }
}
impl<M> ::std::fmt::Display for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
self.x.fmt(f)
}
}
impl<M: Mod> ::std::fmt::Debug for ModInt<M> {
fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
let (mut a, mut b, _) = red(self.x, M::m());
if b < 0 {
a = -a;
b = -b;
}
write!(f, "{}/{}", a, b)
}
}
impl<M: Mod> From<i64> for ModInt<M> {
fn from(x: i64) -> Self { Self::new(x) }
}
// Finds the simplest fraction x/y congruent to r mod p.
// The return value (x, y, z) satisfies x = y * r + z * p.
fn red(r: i64, p: i64) -> (i64, i64, i64) {
if r.abs() <= 10000 {
return (r, 1, 0);
}
let mut nxt_r = p % r;
let mut q = p / r;
if 2 * nxt_r >= r {
nxt_r -= r;
q += 1;
}
if 2 * nxt_r <= -r {
nxt_r += r;
q -= 1;
}
let (x, z, y) = red(nxt_r, r);
(x, y - q * z, z)
}
} // mod mod_int
macro_rules! define_mod {
($struct_name: ident, $modulo: expr) => {
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
struct $struct_name {}
impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }
}
}
const MOD: i64 = 998_244_353;
define_mod!(P, MOD);
type MInt = mod_int::ModInt<P>;
// Depends on MInt.rs
fn fact_init(w: usize) -> (Vec<MInt>, Vec<MInt>) {
let mut fac = vec![MInt::new(1); w];
let mut invfac = vec![0.into(); w];
for i in 1..w {
fac[i] = fac[i - 1] * i as i64;
}
invfac[w - 1] = fac[w - 1].inv();
for i in (0..w - 1).rev() {
invfac[i] = invfac[i + 1] * (i as i64 + 1);
}
(fac, invfac)
}
/// Binary Indexed Tree (Fenwick Tree). Holds an array of type T.
/// T is a commutative monoid. Indices are 1 .. n.
/// Verified by yukicoder No.404 (http://yukicoder.me/submissions/155373)
struct BIT<T> {
n: usize,
ary: Vec<T>,
e: T,
}
impl<T: Clone + std::ops::AddAssign<T>> BIT<T> {
fn new(n: usize, e: T) -> Self {
let n = n.next_power_of_two();
BIT { n: n, ary: vec![e.clone(); n + 1], e: e }
}
/**
* gets the sum in [1 .. idx]
* @param idx
* @return sum
*/
fn accum(&self, mut idx: usize) -> T {
let mut sum = self.e.clone();
while idx > 0 {
sum += self.ary[idx].clone();
idx &= idx - 1;
}
sum
}
/**
* performs data[idx] += val;
*/
fn add<U: Clone>(&mut self, mut idx: usize, val: U)
where T: std::ops::AddAssign<U> {
assert!(idx > 0);
let n = self.n;
while idx <= n {
self.ary[idx] += val.clone();
idx += idx & idx.wrapping_neg();
}
}
/// Make sure that 1 <= idx <= n.
#[allow(unused)]
fn single(&self, idx: usize) -> T
where T: std::ops::Sub<Output = T> {
self.accum(idx) - self.accum(idx - 1)
}
}
fn main() {
input! {
n: usize,
a: [i64; n],
}
let (fac, invfac) = fact_init(n + 1);
let mut coo = a.clone();
coo.sort(); coo.dedup();
let m = coo.len();
let mut tot = MInt::new(0);
let mut f = vec![0; m];
for &a in &a {
let a = coo.binary_search(&a).unwrap();
f[a] += 1;
}
let mut acc = vec![0; m + 1];
for i in 0..m {
acc[i + 1] = acc[i] + f[i];
}
let ninv2 = MInt::new(n as i64 * n as i64 * 2).inv();
// inter
let mut stairs = MInt::new(0);
let mut sq = MInt::new(0);
for i in 1..n + 1 {
let i = i as i64;
stairs += i;
sq += i * i;
}
for i in 0..m {
let count = acc[i] as i64 * f[i];
tot += (stairs * stairs - sq) * ninv2 * count;
}
eprintln!("{:?}", tot);
// self-contained
let mut tmp = MInt::new(0);
for i in 1..n + 1 {
tmp += i as i64 * (i as i64 - 1);
}
tmp *= MInt::new(n as i64 * (n - 1) as i64).inv();
eprintln!("tmp = {:?}", tmp);
let mut bit = BIT::new(m, 0);
for i in 0..n {
let a = coo.binary_search(&a[i]).unwrap();
tot += tmp * (i as i64 - bit.accum(a + 1));
bit.add(a + 1, 1);
}
for i in 1..n + 1 {
tot *= fac[n] * invfac[i] * invfac[n - i];
}
println!("{}", tot);
}