結果

問題 No.718 行列のできるフィボナッチ数列道場 (1)
ユーザー vwxyzvwxyz
提出日時 2021-10-20 23:48:58
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 43 ms / 2,000 ms
コード長 17,012 bytes
コンパイル時間 353 ms
コンパイル使用メモリ 82,028 KB
実行使用メモリ 58,044 KB
最終ジャッジ日時 2024-09-20 06:48:13
合計ジャッジ時間 1,995 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 42 ms
56,644 KB
testcase_01 AC 42 ms
56,704 KB
testcase_02 AC 40 ms
56,816 KB
testcase_03 AC 42 ms
57,704 KB
testcase_04 AC 42 ms
56,152 KB
testcase_05 AC 42 ms
57,616 KB
testcase_06 AC 43 ms
56,844 KB
testcase_07 AC 42 ms
57,960 KB
testcase_08 AC 42 ms
56,640 KB
testcase_09 AC 41 ms
58,044 KB
testcase_10 AC 43 ms
57,768 KB
testcase_11 AC 42 ms
57,360 KB
testcase_12 AC 43 ms
56,416 KB
testcase_13 AC 43 ms
56,288 KB
testcase_14 AC 42 ms
57,316 KB
testcase_15 AC 43 ms
56,188 KB
testcase_16 AC 43 ms
56,588 KB
testcase_17 AC 43 ms
57,308 KB
testcase_18 AC 43 ms
56,092 KB
testcase_19 AC 41 ms
56,712 KB
testcase_20 AC 42 ms
56,776 KB
testcase_21 AC 40 ms
57,268 KB
testcase_22 AC 41 ms
57,360 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
readline=sys.stdin.readline

class Polynomial:
    def __init__(self,polynomial,max_degree=-1,eps=0,mod=0):
        self.max_degree=max_degree
        if self.max_degree!=-1 and len(polynomial)>self.max_degree+1:
            self.polynomial=polynomial[:self.max_degree+1]
        else:
            self.polynomial=polynomial
        self.mod=mod
        self.eps=eps

    def __eq__(self,other):
        if type(other)!=Polynomial:
            return False
        if len(self.polynomial)!=len(other.polynomial):
            return False
        for i in range(len(self.polynomial)):
            if self.eps<abs(self.polynomial[i]-other.polynomial[i]):
                return False
        return True

    def __ne__(self,other):
        if type(other)!=Polynomial:
            return True
        if len(self.polynomial)!=len(other.polynomial):
            return True
        for i in range(len(self.polynomial)):
            if self.eps<abs(self.polynomial[i]-other.polynomial[i]):
                return True
        return False

    def __add__(self,other):
        if type(other)==Polynomial:
            summ=[0]*max(len(self.polynomial),len(other.polynomial))
            for i in range(len(self.polynomial)):
                summ[i]+=self.polynomial[i]
            for i in range(len(other.polynomial)):
                summ[i]+=other.polynomial[i]
            if self.mod:
                for i in range(len(summ)):
                    summ[i]%=self.mod
        else:
            summ=[x for x in self.polynomial] if self.polynomial else [0]
            summ[0]+=other
            if self.mod:
                summ[0]%=self.mod
        while summ and abs(summ[-1])<=self.eps:
            summ.pop()
        summ=Polynomial(summ,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return summ

    def __sub__(self,other):
        if type(other)==Polynomial:
            diff=[0]*max(len(self.polynomial),len(other.polynomial))
            for i in range(len(self.polynomial)):
                diff[i]+=self.polynomial[i]
            for i in range(len(other.polynomial)):
                diff[i]-=other.polynomial[i]
            if self.mod:
                for i in range(len(diff)):
                    diff[i]%=self.mod
        else:
            diff=[x for x in self.polynomial] if self.polynomial else [0]
            diff[0]-=other
            if self.mod:
                diff[0]%=self.mod
        while diff and abs(diff[-1])<=self.eps:
            diff.pop()
        diff=Polynomial(diff,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return diff

    def __mul__(self,other):
        if type(other)==Polynomial:
            if self.max_degree==-1:
                prod=[0]*(len(self.polynomial)+len(other.polynomial)-1)
                for i in range(len(self.polynomial)):
                    for j in range(len(other.polynomial)):
                        prod[i+j]+=self.polynomial[i]*other.polynomial[j]
            else:
                prod=[0]*min(len(self.polynomial)+len(other.polynomial)-1,self.max_degree+1)
                for i in range(len(self.polynomial)):
                    for j in range(min(len(other.polynomial),self.max_degree+1-i)):
                        prod[i+j]+=self.polynomial[i]*other.polynomial[j]
            if self.mod:
                for i in range(len(prod)):
                    prod[i]%=self.mod
        else:
            if self.mod:
                prod=[x*other%self.mod for x in self.polynomial]
            else:
                prod=[x*other for x in self.polynomial]
        while prod and abs(prod[-1])<=self.eps:
            prod.pop()
        prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return prod

    def __matmul__(self,other):
        assert type(other)==Polynomial
        if self.mod:
            prod=NTT(self.polynomial,other.polynomial)
        else:
            prod=FFT(self.polynomial,other.polynomial)
        if self.max_degree!=-1 and len(prod)>self.max_degree+1:
            prod=prod[:self.max_degree+1]
            while prod and abs(prod[-1])<=self.eps:
                prod.pop()
        prod=Polynomial(prod,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return prod

    def __truediv__(self,other):
        if type(other)==Polynomial:
            assert other.polynomial
            for n in range(len(other.polynomial)):
                if self.eps<abs(other.polynomial[n]):
                    break
            assert len(self.polynomial)>n
            for i in range(n):
                assert abs(self.polynomial[i])<=self.eps
            self_polynomial=self.polynomial[n:]
            other_polynomial=other.polynomial[n:]
            if self.mod:
                inve=MOD(self.mod).Pow(other_polynomial[0],-1)
            else:
                inve=1/other_polynomial[0]
            quot=[]
            for i in range(len(self_polynomial)-len(other_polynomial)+1):
                if self.mod:
                    quot.append(self_polynomial[i]*inve%self.mod)
                else:
                    quot.append(self_polynomial[i]*inve)
                for j in range(len(other_polynomial)):
                    self_polynomial[i+j]-=other_polynomial[j]*quot[-1]
                    if self.mod:
                        self_polynomial[i+j]%=self.mod
            for i in range(max(0,len(self_polynomial)-len(other_polynomial)+1),len(self_polynomial)):
                if self.eps<abs(self_polynomial[i]):
                    assert self.max_degree!=-1
                    self_polynomial=self_polynomial[-len(other_polynomial)+1:]+[0]*(len(other_polynomial)-1-len(self_polynomial))
                    while len(quot)<=self.max_degree:
                        self_polynomial.append(0)
                        if self.mod:
                            quot.append(self_polynomial[0]*inve%self.mod)
                            self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1])%self.mod for i in range(1,len(self_polynomial))]
                        else:
                            quot.append(self_polynomial[0]*inve)
                            self_polynomial=[(self_polynomial[i]-other_polynomial[i]*quot[-1]) for i in range(1,len(self_polynomial))]
                    break
            quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        else:
            assert self.eps<abs(other)
            if self.mod:
                inve=MOD(self.mod).Pow(other,-1)
                quot=Polynomial([x*inve%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
            else:
                quot=Polynomial([x/other for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return quot

    def __rtruediv__(self,other):
        assert self.polynomial and self.eps<self.polynomial[0]
        assert self.max_degree!=-1
        if self.mod:
            quot=[MOD(self.mod).Pow(self.polynomial[0],-1)]
            if self.mod==998244353:
                prim_root=3
                prim_root_inve=332748118
            else:
                prim_root=Primitive_Root(self.mod)
                prim_root_inve=MOD(self.mod).Pow(prim_root,-1)
            def DFT(polynomial,n,inverse=False):
                polynomial=polynomial+[0]*((1<<n)-len(polynomial))
                if inverse:
                    for bit in range(1,n+1):
                        a=1<<bit-1
                        x=pow(prim_root,mod-1>>bit,mod)
                        U=[1]
                        for _ in range(a):
                            U.append(U[-1]*x%mod)
                        for i in range(1<<n-bit):
                            for j in range(a):
                                s=i*2*a+j
                                t=s+a
                                polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t]*U[j])%mod,(polynomial[s]-polynomial[t]*U[j])%mod
                    x=pow((mod+1)//2,n,mod)
                    for i in range(1<<n):
                        polynomial[i]*=x
                        polynomial[i]%=mod
                else:
                    for bit in range(n,0,-1):
                        a=1<<bit-1
                        x=pow(prim_root_inve,mod-1>>bit,mod)
                        U=[1]
                        for _ in range(a):
                            U.append(U[-1]*x%mod)
                        for i in range(1<<n-bit):
                            for j in range(a):
                                s=i*2*a+j
                                t=s+a
                                polynomial[s],polynomial[t]=(polynomial[s]+polynomial[t])%mod,U[j]*(polynomial[s]-polynomial[t])%mod
                return polynomial
        else:
            quot=[1/self.polynomial[0]]
            def DFT(polynomial,n,inverse=False):
                N=len(polynomial)
                if inverse:
                    primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
                else:
                    primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
                polynomial=polynomial+[0]*((1<<n)-N)
                if inverse:
                    for bit in range(1,n+1):
                        a=1<<bit-1
                        for i in range(1<<n-bit):
                            for j in range(a):
                                s=i*2*a+j
                                t=s+a
                                polynomial[s],polynomial[t]=polynomial[s]+polynomial[t]*primitive_root[j<<n-bit],polynomial[s]-polynomial[t]*primitive_root[j<<n-bit]
                    for i in range(1<<n):
                        polynomial[i]=round((polynomial[i]/(1<<n)).real)
                else:
                    for bit in range(n,0,-1):
                        a=1<<bit-1
                        for i in range(1<<n-bit):
                            for j in range(a):
                                s=i*2*a+j
                                t=s+a
                                polynomial[s],polynomial[t]=polynomial[s]+polynomial[t],primitive_root[j<<n-bit]*(polynomial[s]-polynomial[t])

                return polynomial
        for n in range(self.max_degree.bit_length()):
            prev=quot
            if self.mod:
                polynomial=[x*y*y%self.mod for x,y in zip(DFT(self.polynomial[:1<<n+1],n+2),DFT(prev,n+2))]
                quot=DFT(polynomial,n+2,inverse=True)[:1<<n+1]
            else:
                polynomial=[x*y*y for x,y in zip(DFT(self.polynomial[:1<<n+1],n+2),DFT(prev,n+2))]
                quot=DFT(polynomial,n+2,inverse=True)[:1<<n+1]
            for i in range(1<<n):
                quot[i]=2*prev[i]-quot[i]
                if self.mod:
                    quot[i]%=self.mod
            for i in range(1<<n,1<<n+1):
                quot[i]=-quot[i]
                if self.mod:
                    quot[i]%=self.mod
        quot=quot[:self.max_degree+1]
        for i in range(len(quot)):
            quot[i]*=other
            if self.mod:
                quot[i]%=self.mod
        return quot

    def __floordiv__(self,other):
        assert type(other)==Polynomial
        quot=[0]*(len(self.polynomial)-len(other.polynomial)+1)
        rema=[x for x in self.polynomial]
        if self.mod:
            inve=MOD(self.mod).Pow(other.polynomial[-1],-1)
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
                    rema[i+j]%=self.mod
        else:
            inve=1/other.polynomial[-1]
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
        quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return quot

    def __mod__(self,other):
        assert type(other)==Polynomial
        quot=[0]*(len(self.polynomial)-len(other.polynomial)+1)
        rema=[x for x in self.polynomial]
        if self.mod:
            inve=MOD(self.mod).Pow(other.polynomial[-1],-1)
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
                    rema[i+j]%=self.mod
        else:
            inve=1/other.polynomial[-1]
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
        while rema and abs(rema[-1])<=self.eps:
            rema.pop()
        rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return rema

    def __divmod__(self,other):
        assert type(other)==Polynomial
        quot=[0]*(len(self.polynomial)-len(other.polynomial)+1)
        rema=[x for x in self.polynomial]
        if self.mod:
            inve=MOD(self.mod).Pow(other.polynomial[-1],-1)
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve%self.mod
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
                    rema[i+j]%=self.mod
        else:
            inve=1/other.polynomial[-1]
            for i in range(len(self.polynomial)-len(other.polynomial),-1,-1):
                quot[i]=rema[i+len(other.polynomial)-1]*inve
                for j in range(len(other.polynomial)):
                    rema[i+j]-=quot[i]*other.polynomial[j]
        while rema and abs(rema[-1])<=self.eps:
            rema.pop()
        quot=Polynomial(quot,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        rema=Polynomial(rema,max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return quot,rema

    def __neg__(self):
        if self.mod:
            nega=Polynomial([(-x)%self.mod for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        else:
            nega=Polynomial([-x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return nega

    def __pos__(self):
        posi=Polynomial([x for x in self.polynomial],max_degree=self.max_degree,eps=self.eps,mod=self.mod)
        return posi

    def __bool__(self):
        return self.polynomial

    def __getitem__(self,n):
        if n<=len(self.polynomial)-1:
            return self.polynomial[n]
        else:
            return 0

    def __setitem__(self,n,x):
        if self.mod:
            x%=self.mod
        if self.max_degree==-1 or n<=self.max_degree:
            if n<=len(self.polynomial)-1:
                self.polynomial[n]=x
            elif self.eps<abs(x):
                self.polynomial+=[0]*(n-len(self.polynomial))+[x]

    def __call__(self,x):
        retu=0
        pow_x=1
        for i in range(len(self.polynomial)):
            retu+=pow_x*self.polynomial[i]
            pow_x*=x
            if self.mod:
                retu%=self.mod
                pow_x%=self.mod
        return retu

    def __str__(self):
        return "["+", ".join(map(str,self.polynomial))+"]"

    def degree(self):
        return len(self.polynomial)-1

def Bostan_Mori(poly_nume,poly_deno,N,mod=0,fft=False,ntt=False):
    if type(poly_nume)==Polynomial:
        poly_nume=poly_nume.polynomial
    if type(poly_deno)==Polynomial:
        poly_deno=poly_deno.polynomial
    if ntt:
        convolve=NTT
    elif fft:
        convolve=FFT
    else:
        def convolve(poly_nume,poly_deno):
            conv=[0]*(len(poly_nume)+len(poly_deno)-1)
            for i in range(len(poly_nume)):
                for j in range(len(poly_deno)):
                    conv[i+j]+=poly_nume[i]*poly_deno[j]
            if mod:
                for i in range(len(conv)):
                    conv[i]%=mod
            return conv
    while N:
        poly_deno_=[-x if i%2 else x for i,x in enumerate(poly_deno)]
        if N%2:
            poly_nume=convolve(poly_nume,poly_deno_)[1::2]
        else:
            poly_nume=convolve(poly_nume,poly_deno_)[::2]
        poly_deno=convolve(poly_deno,poly_deno_)[::2]
        if fft and mod:
            for i in range(len(poly_nume)):
                poly_nume[i]%=mod
            for i in range(len(poly_deno)):
                poly_deno[i]%=mod
        N//=2
    return poly_nume[0]

N=int(readline())
mod=10**9+7
ans=Bostan_Mori([0,1],[1,-1,-1],N,mod=mod)*Bostan_Mori([0,1],[1,-1,-1],N+1,mod=mod)%mod
print(ans)
0