結果
| 問題 | No.1731 Product of Subsequence |
| コンテスト | |
| ユーザー |
brthyyjp
|
| 提出日時 | 2021-11-05 22:16:54 |
| 言語 | PyPy3 (7.3.15) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,169 bytes |
| 記録 | |
| コンパイル時間 | 322 ms |
| コンパイル使用メモリ | 82,256 KB |
| 実行使用メモリ | 123,960 KB |
| 最終ジャッジ日時 | 2024-11-06 13:10:38 |
| 合計ジャッジ時間 | 6,831 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | -- * 4 |
| other | TLE * 1 -- * 30 |
ソースコード
def gcd(a, b):
while b: a, b = b, a % b
return a
def isPrimeMR(n):
d = n - 1
d = d // (d & -d)
L = [2]
for a in L:
t = d
y = pow(a, t, n)
if y == 1: continue
while y != n - 1:
y = (y * y) % n
if y == 1 or t == n - 1: return 0
t <<= 1
return 1
def findFactorRho(n):
m = 1 << n.bit_length() // 8
for c in range(1, 99):
f = lambda x: (x * x + c) % n
y, r, q, g = 2, 1, 1, 1
while g == 1:
x = y
for i in range(r):
y = f(y)
k = 0
while k < r and g == 1:
ys = y
for i in range(min(m, r - k)):
y = f(y)
q = q * abs(x - y) % n
g = gcd(q, n)
k += m
r <<= 1
if g == n:
g = 1
while g == 1:
ys = f(ys)
g = gcd(abs(x - ys), n)
if g < n:
if isPrimeMR(g): return g
elif isPrimeMR(n // g): return n // g
return findFactorRho(g)
def primeFactor(n):
i = 2
ret = {}
rhoFlg = 0
while i*i <= n:
k = 0
while n % i == 0:
n //= i
k += 1
if k: ret[i] = k
i += 1 + i % 2
if i == 101 and n >= 2 ** 20:
while n > 1:
if isPrimeMR(n):
ret[n], n = 1, 1
else:
rhoFlg = 1
j = findFactorRho(n)
k = 0
while n % j == 0:
n //= j
k += 1
ret[j] = k
if n > 1: ret[n] = 1
if rhoFlg: ret = {x: ret[x] for x in sorted(ret)}
return ret
import sys
import io, os
input = io.BytesIO(os.read(0,os.fstat(0).st_size)).readline
def main():
n, k = map(int, input().split())
A = list(map(int, input().split()))
mod = 10**9+7
from collections import defaultdict
d = primeFactor(k)
toid = {}
max_q = {}
i = 0
for k, v in d.items():
toid[k] = i
max_q[i] = v
i += 1
m = len(toid)
dp = defaultdict(lambda: 0)
dp[tuple([0]*m)] = 1
for a in A:
nx = defaultdict(lambda: 0)
for k, v in dp.items():
nx[k] += v
nx[k] %= mod
if a == 1:
for k, v in dp.items():
nx[k] += v
nx[k] %= mod
else:
c = primeFactor(a)
t = [0]*m
for p, q in c.items():
if p not in toid:
continue
else:
t[toid[p]] += q
for k, v in dp.items():
nk = [0]*m
for i, (q, nq) in enumerate(zip(k, t)):
nk[i] = min(max_q[i], q+nq)
nk = tuple(nk)
nx[nk] += v
nx[nk] %= mod
dp = nx
target = [0]*m
for i, v in max_q.items():
target[i] = v
target = tuple(target)
print(dp[target]%mod)
if __name__ == '__main__':
main()
brthyyjp